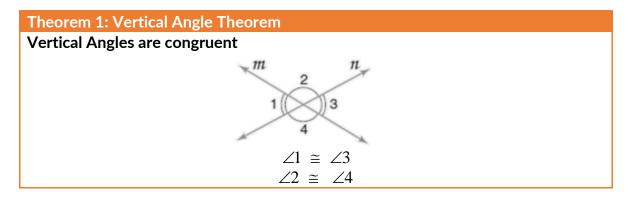
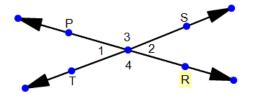

Mathelpers

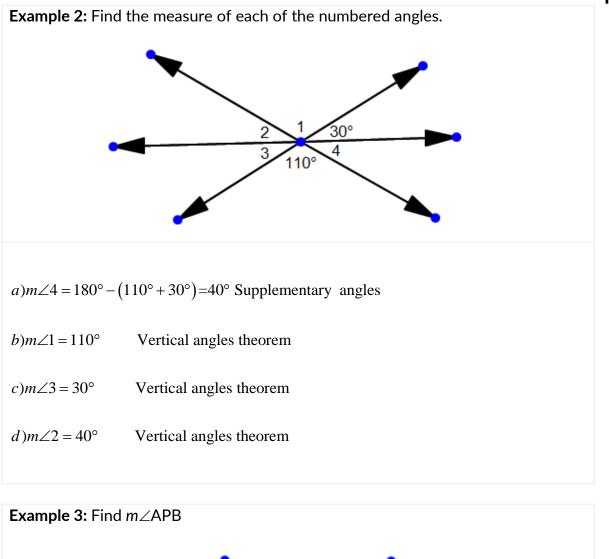

Vertical Angles

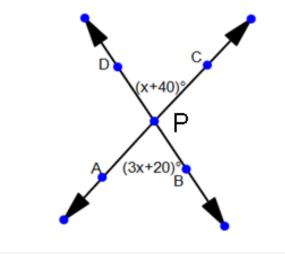
As shown at the right, two intersecting lines form two pairs of **nonadjacent angles**, $\angle 1$ and $\angle 2$ are nonadjacent, $\angle 3$ and $\angle 4$ are nonadjacent.



You may have noticed that vertical angles always appear to have the same measure. The following theorem state this

Example 1:


Given: A pair of vertical angles ($\angle 1$ and $\angle 2$).



Prove: $\angle 1 \cong \angle 2$

Statements	Reasons
1) $\angle 1$ and $\angle 2$ are vertical angles	1) given
2) $\angle 3$ is a supplement of $\angle 1$ $\angle 3$ is a supplement of $\angle 2$	2) linear pair
$\angle 3$ is a supplement of $\angle 2$	
3) ∠1 ≅ ∠2	3) Supp. Of the same angle are congruent

Mathelpers

 $m \angle APB = m \angle DPC$, by Vertical Angles Theorem 3x + 20 = x + 402x = 20x = 10.

Thus, $m \angle APB = 3x + 20 = 3 \cdot 10 + 20 = 50$.

Mathelpers.com