Vertical Angles

As shown at the right, two intersecting lines form two pairs of nonadjacent angles, $\angle 1$ and $\angle 2$ are nonadjacent, $\angle 3$ and $\angle 4$ are nonadjacent.

Definition 1: Vertically Opposite Angles

Two angles are vertical if and only if they are two nonadjacent angles formed by a pair of intersecting lines

Vertical Angles: $\angle 1$ and $\angle 3$ $\angle 2$ and $\angle 4$

You may have noticed that vertical angles always appear to have the same measure. The following theorem state this

Theorem 1: Vertical Angle Theorem

Vertical Angles are congruent

$$
\begin{aligned}
& \angle 1 \cong \angle 3 \\
& \angle 2 \cong \angle 4
\end{aligned}
$$

Example 1:

Given: A pair of vertical angles ($\angle 1$ and $\angle 2$).

Prove: $\angle 1 \cong \angle 2$

1) $\angle 1$ and $\angle 2$ are vertical angles	1) given
2) $\angle 3$ is a supplement of $\angle 1$	2) linear pair
$\angle 3$ is a supplement of $\angle 2$	3) Supp. Of the same angle are congruent
3) $\angle 1 \cong \angle 2$	

Example 2: Find the measure of each of the numbered angles.

a) $m \angle 4=180^{\circ}-\left(110^{\circ}+30^{\circ}\right)=40^{\circ}$ Supplementary angles
b) $m \angle 1=110^{\circ} \quad$ Vertical angles theorem
c) $m \angle 3=30^{\circ} \quad$ Vertical angles theorem
d) $m \angle 2=40^{\circ} \quad$ Vertical angles theorem

Example 3: Find $m \angle A P B$

$m \angle$ APB $=m \angle$ DPC, by Vertical Angles Theorem
$3 x+20=x+40$
$2 x=20$
$x=10$.
Thus, $m \angle A P B=3 x+20=3 \cdot 10+20=50$.

