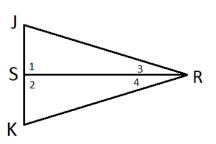
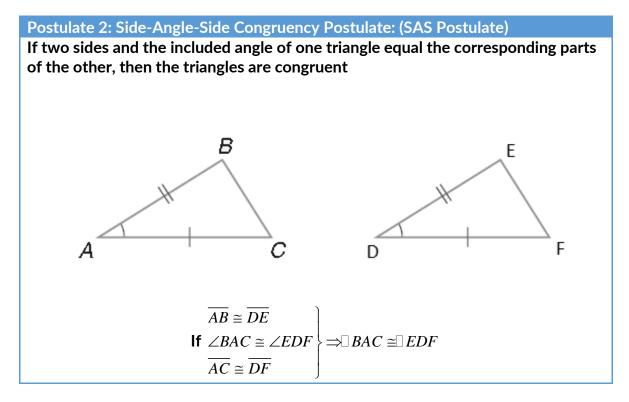

The SAS, ASA and SSS Postulates


To prove that two triangles are congruent we have to prove that three corresponding parts are congruent. Those corresponding parts can be sides only or a combination of sides and angles.

The postulates are used to prove that two triangles are congruent

Example 1:

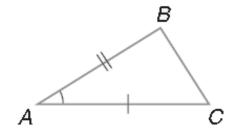
Given: \overline{RS} bisects \overline{JK} $\overline{RJ} \cong \overline{RK}$

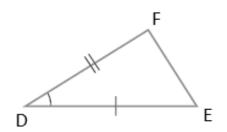


Statements	Reasons
1) \overline{RS} bisects \overline{JK}	1) Given
2) $\overline{JS} \cong \overline{KS}$	2) Definition of a segment bisector
3) $\overline{RS} \cong \overline{RS}$	3) Reflexive
4) ΔRSJ≅ΔRSK	4) SSS postulate

Mathelpers.com

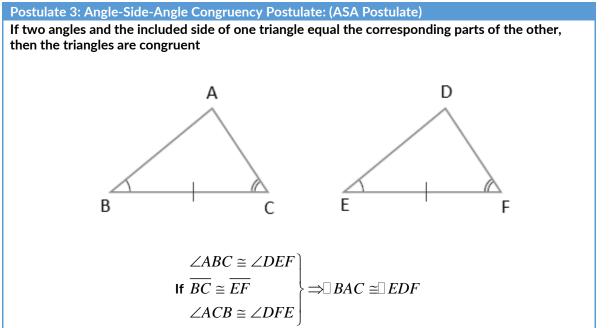
Mathelpers

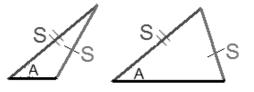



Example 2:

Given: $\overline{AB} @ \overline{DF}$

 $\overline{AC} @ \overline{DE}$

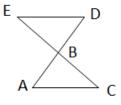

 $m \oplus EDF = m \oplus CAB$


Prove: VEDF @VCAB

Statements	Reasons
1) $\overline{AB} @ \overline{DF}$	1) Given
2) m DEDF @m DCAB	2) Given
$\mathbf{3)} \ \overline{AC} @ \overline{DE}$	3) Given
4) \setminus VEDF @VCAB	4) SAS Postulate

Two cases will not necessarily give congruent triangles are SSA and AAA so do not think about them when you want to prove congruent triangles

<u>SSA</u>: Two triangles with two sides and a non-included angle equal may or may not be congruent.



<u>AAA:</u> If two angles on one triangle are equal, respectively, to two angles on another triangle, then the triangles are not necessarily congruent.

Example 3:

Given: B is the midpoint of \overline{AD} and \overline{CE}

Prove: $\triangle ABC$	$\cong \Delta DBE$
------------------------	--------------------

Statements	Reasons
1) B is the midpoint of \overline{AD} and \overline{CE}	1) Given
2) $\overline{EB} \cong \overline{CB}; \overline{AB} \cong \overline{DB}$	2) Definition of a midpoint
3) $\angle EBD \cong \angle CBA$	3) Vertical angles are congruent
4) ΔABC≅ΔDBE	4) SAS postulate