Supplementary and Complementary Angles

Each figure above shows a pair of adjacent angles, $\angle 1$ and $\angle 2$. In the second figure, the outer rays $\overrightarrow{O A}$ and $\overrightarrow{O B}$ form a line. In this case, $\angle \mathrm{AOB}$ is a straight angle and the outer rays are opposite rays.

Definition 1: Linear Pair

Two angles form a linear pair if and only if they are adjacent and their non-common sides are opposite rays

$\angle 1$ and $\angle 2$ are a linear pair

Definition 2: Supplementary Angles

Two angles are supplementary if and only if the sum of their degree measures is 180°

$m \angle M N P+m \angle R S T=180^{\circ}$

Each angle is called a supplement of the other.

Example 1: Are the pairs of angles supplementary? Explain your answer. a)

$130+40=170$. The sum is not 180 .
Not supplementary angles.
b)

The outer rays form a straight angle.
Supplementary angles.

The symbol for perpendicular is \perp. Thus, $\stackrel{O A}{\triangle B}$ means " $\overrightarrow{O B}$ is perpendicular to $\stackrel{\rightharpoonup A}{ }$ ". Since segments and rays are parts of lines, then intersecting segments and rays are perpendicular if the lines that contain them are perpendicular.

Sometimes, adjacent angles have their outer rays perpendicular. In the figure at the right, $\overrightarrow{O A} \perp \overrightarrow{O B}$ and $\angle 1$ and $\angle 2$ are acute angles. So $\angle \mathrm{AOB}$ is a right angle with $m \angle A O B=90$. By the Angle Addition Postulate $m \angle 1+m \angle 2=m \angle A O B$. Therefore, $m \angle 1+m \angle 2=90$, by substituting 90
 for $m \angle A O B$.

Theorem

If the outer rays of two acute adjacent angles are perpendicular, then the sum of the measures of the angles is 90.

Definition 4: Complementary Angles

Two angles are complementary if and only if the sum of their degree measures is 90°

$m \angle A B C+m \angle D E F=90^{\circ}$
Each angle is called a complement of the other.
The Theorem above may now be stated as follows:
If the outer rays of two acute adjacent angles are perpendicular, then the angles are complementary. Example 2: Are the pairs of angles complementary? Explain your answer.
a)

The outer rays form a perpendicular.
Complementary angles
b)

$55+40=95$. The sum is not 90 .
Not complementary angles.

Example 3: Find the measure of a complement and a supplement, if possible.

Angle		Measure	Measure of complement
A	35	55	Measure of supplement
B	97	Not possible	145
C (acute angle)	x	$90-x$	83
D (acute angle)	$4 x-5$	$90-(4 x-5)=95-4 x$	$180-(4 x-5)=185-4 x$

Example 4: The measure of an angle is 60 less than twice the measure of its complement. Find the measure of the angles.

1) Represent the data: Let $x=$ measure of complement

$$
\begin{aligned}
& 2 x-60=\text { measure of the angle } \\
& (60 \text { less than twice } x)
\end{aligned}
$$

2) Write the equation: $x+(2 x-60)=90$

Sum of measures of complementary angles is 90 .
3) Solve the equation: $3 x-60=90$

$$
3 x=150
$$

$$
x=50
$$

The measure of the complement.
Find the measures of the angle.

$$
2 x-60=2 \cdot 50-60=100-60=40
$$

4) Check the solutions: Are the angles complementary?

$$
40+50=90 \checkmark
$$

Is the angle measure 60 less than
twice measure of complement?
$40=2 \cdot 50-60$
$40=100-60$
$40=40 \checkmark$
5) Label the answer: Thus, the measure of the angles are 40 and 50.

Example 5: Given: $\angle \mathrm{B} \cong \angle \mathrm{C}$,
$\angle \mathrm{A}$ is a supplement of $\angle \mathrm{B}$, and $\angle \mathrm{D}$ is a supplement of $\angle \mathrm{C}$.

Prove: $\angle \mathrm{A} \cong \angle \mathrm{D}$

Statements

1. $\angle A$ is a supplement of $\angle B$ $\angle D$ is a supplement of $\angle C$	1. Given
2. $m \angle A+m \angle B=180$ $m \angle D+m \angle C=180$	2.Def of supp $\angle \mathrm{s}$
3. $m \angle A+m \angle B=m \angle D+m \angle C$	3. Sub
4. $m \angle B=m \angle C$	
$5 . \therefore m \angle A=m \angle D(\angle A \cong \angle D)$	5. Equations may be subtracted

Example 6: Given: $\angle 1 \cong \angle 4$

A D E B
Prove: $\angle 2 \cong \angle 3$

1. $\angle 1 \cong \angle 4$	1. Given
2. $\angle 2$ is a supplement of $\angle 1$ $\angle 3$ is a supplement of $\angle 4$	2. Linear pair Post
3. $\therefore \angle 2 \cong \angle 3$	3. Supp of $\cong \angle \mathrm{s}$ are \cong

