Solving Multi - Step Equations

Use algebra tiles to solve $4 x+6=10+2 x$.
Model $4 x+6=10+2 x$ using algebra tiles

Remove two x-tiles from each side

Remove six 1-tiles from each side

Divide the remaining tiles into two equal groups. Each x-tile is equal to two 1 -tile. So, the solution is 2

You can solve a two-step equation by using two inverse operations.
Step 1: Combine all the like terms
Step 2: Bring all the terms containing the variable to one side, and the constants to the other side
Step 3: Multiply both sides of the equation by the reciprocal of the coefficient of the variable

Example 1: Solve $3 x+7=-5$. Check your solution.
$3 x+7=-5$
$3 x+7-7=-5-7$
$3 x=-12$
$\frac{3 x}{3}=-\frac{12}{3}$
$x=-4$

The solution is ${ }^{-4}$.
Check: $3 x+7=-5$

$$
\begin{aligned}
3(-4)+7 & =-5 \\
-5 & =-5
\end{aligned}
$$

Write original equation.
Subtract 7 from each side
Simplify
Divide each side by 3

Number of solutions

When you solve an equation, you may find that it has no solution or that every number is a solution.

Case 1: An Equation with no Solution

Solve $5(2 x+1)=10 x$
$5(2 x+1)=10 x \quad$ Write original equation.
$10 x+5=10 x \quad$ Distributive property.
Notice that $10 x+5=10 x$ is not true because the number $10 x$ cannot be equal to 5 more than itself. The equation has no solution. As a check, you can continue solving the equation.
$\begin{array}{cl}10 x+5-10 x=10 x-10 x & \text { Subtract 10x from each side } \\ 5=0 x & \text { Simplify }\end{array}$
The statement $5=0$ is not true, so the equation has no solution.

Case 2: Solving an Equation with All Numbers as Solutions

Solve $6 x+2=2(3 x+1)$.
$\begin{array}{lrl}6 x+2=2(3 x+1) & \text { Write original equation } \\ 6 x+2=6 x+2 & \text { Distributive property }\end{array}$
Notice that for all values of x, the statement $6 x+2=2(3 x+1)$ is true. The equation has every number as a solution.

