Solving Equations by Factoring

You will learn how to solve equations using factoring and zero product property.
If a polynomial equation can be written in the form $a b=0$, then the zero property can be applied to solve the equation.

Example 1: Solve each of the following equations.

1) $x^{3}-9 x=0$
2) $x^{3}+12 x=7 x^{2}$
3) $(x+2)(x+3)=2$

Solution

1) $x^{3}-9 x=0$
$\Rightarrow x\left(x^{2}-9\right)=0 \quad$ Factor completely.
$\Rightarrow x(x-3)(x+3)=0 \quad$ Use zero product property.
$x=0, x=3$ or $x=-3$
2) $x^{3}+12 x=7 x^{2}$
$\Rightarrow x^{3}-7 x^{2}+12 x=0 \quad$ Write a zero equation.
$\Rightarrow x\left(x^{2}-7 x+12\right)=0 \quad$ Factor completely.
$\Rightarrow x(x-3)(x-4)=0$
$\Rightarrow x=0, x=3$ or $x=4$ Use zero product property.
3) $(x+2)(x+3)=2$
$\Rightarrow(x+2)(x+3)-2=0 \quad$ Write a zero equation.
$\Rightarrow x^{2}+5 x+6-2=0 \quad$ Expand $(x+2)(x+3)$.
$\Rightarrow x^{2}+5 x+4=0 \quad$ Simplify.
$\Rightarrow(x+1)(x+4)=0 \quad$ Factor completely.
$\Rightarrow x=-1$ or $x=-4 \quad$ Solve.
Example 2: A square has an area of $16 \mathrm{~m}^{2}$. Find the length of each side.
EXPLORE
Let $x=$ the length of each side

PLAN $\quad x^{2}=16$ The formula for the area of a square is $A=s^{2}$.

$$
\begin{array}{ll}
\text { SOLVE } & x^{2}-16=0 \\
& (x-4)(x+4)=0 \\
& x=4 \quad \text { or } \quad x=-4
\end{array}
$$

EXAMINE -4 m is not a reasonable length for each side of a square.

