Remarkable Identities

Consider the following products.

$$
\begin{aligned}
& (a+b)^{2}=(a+b)(a+b)=a^{2}+a b+a b+b^{2}=a^{2}+2 a b+b^{2} \\
& (2+3)^{2}=5^{2}=25 \quad(2+3)^{2}=(2+3)(2+3)=4+6+6+9=25
\end{aligned}
$$

Using a similar procedure, the general form $(a+b)^{2}$ can be simplified as follows.

Square of a Sum

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

Example 1: Expand

a) $(x+3)^{2}$
$(x+3)^{2}$
$=x^{2}+2 \bullet x \bullet 3+3^{2}$
$=x^{2}+6 x+9$
b) $(4 x+5 y)^{2}$

$$
\begin{aligned}
& (4 x+5 y)^{2} \\
& =(4 x)^{2}+2 \bullet 4 x \bullet 5 y+(5 y)^{2} \\
& =16 x^{2}+40 x y+25 y^{2}
\end{aligned}
$$

Square of a Difference

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

$(\text { first term })^{2}-t$ wice the product of the first term and the sec ond term $+(\text { second term })^{2}$
Consider the following products.

$$
\begin{aligned}
& (a+b)(a-b)=a^{2}+a b-a b-b^{2}=a^{2}-b^{2} \\
& (6+3)(6-3)=9 \bullet 3=27 \quad(6+3)(6-3)=6^{2}-3^{2}=36-9=27
\end{aligned}
$$

Product of a Sum and a Difference

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

$(\text { first term })^{2}-(\text { second term })^{2}$

