Proving Parallel Lines

Postulate 1: Converse of Corresponding Angles

In a plane, if two lines are cut by a transversal so that a pair of corresponding angles is congruent, then the lines are parallel

Theorem 2: Converse of Alternate Interior Angles

In a plane, if two lines are cut by a transversal so that a pair of alternate interior angles is congruent, then the two lines are parallel

$$
\text { If } \angle 1 \cong \angle 2 \text {, then } a \| b \text {. }
$$

Theorem 2: Converse of Alternate Exterior Angles

In a plane, if two lines are cut by a transversal so that a pair of alternate exterior angles is congruent, then the two lines are parallel

$$
\text { If } \angle 3 \cong \angle 4 \text {, then } a \| b \text {. }
$$

Theorem 3: Converse of Consecutive Interior angles

In a plane, if two lines are cut by a transversal so that a pair of consecutive interior angles are supplementary, then the two lines are parallel

If $m \angle 5+m \angle 6=180$,

Mathelpers

Theorem 4

In a plane, if two lines are perpendicular to the same line, then the two lines are parallel

If $a \perp t$ and $b \perp t$, then $a \| b$.

As a summary, to prove that two lines are perpendicular, you have to prove:

- A pair of alternate interior angles are congruent
- A pair of alternate exterior angles are congruent
- A pair of corresponding angles are congruent
- A pair of consecutive interior angles are supplementary
- Two lines are perpendicular to a third line

Example 1:

Given: transversal t cuts I and n ;
$t \perp I ;|| | n$

Prove: $\mathrm{t} \perp \mathrm{n}$

Statements	Reasons
1. $\mathrm{t} \perp \mathrm{I}$	1.Given
2. $\mathrm{m} \angle 1=90$	2. Def of \perp lines
3. IIIn	3. Given
4. $\angle 1 \cong \angle 2,(m \angle 1=m \angle 2)$	4. Corr. $\angle \mathrm{s}$ Post
5. $\mathrm{m} \angle 2=90$	5. Sub
6. $\therefore \mathrm{t} \perp \mathrm{n}$	6. Def of \perp lines

Example 2:

Given: I II n, m II n
p is a transversal of I, m and n.

Prove: III m

Statements
Reasons

1. IIIn	1. Given
2. $\angle 1 \cong \angle 3$	2. Corr $\angle \mathrm{s}$ Post
3. m IIn	3. Given
4. $\angle 3 \cong \angle \mathbf{2}$	4. Corr $\angle \mathrm{s}$ Post
5. $\angle 1 \cong \angle \mathbf{2}$	5. Trans prop
6. $\therefore \mathrm{IIIm}$	6. Conv Corr $\angle \mathrm{s}$ Post

Example 3:

Given: I II $\mathrm{n}, \mathrm{m} \angle 1=m \angle 3$

Prove: p II q

Statements

1. $\mathrm{I} I \mathrm{n}$	1. Given
2. $\mathrm{m} \angle 1=\mathrm{m} \angle \mathbf{2}$	2. Corr $\angle \mathrm{s}$ Post
3. $\mathrm{m} \angle 1=\mathrm{m} \angle 3$	3. Given
4. $\mathrm{m} \angle \mathbf{2}=\mathrm{m} \angle 3$	4. Substitution
5. $\therefore \mathrm{p} \boldsymbol{I I q}$	5. Converse of Alt Int $\angle \mathrm{s}$ thm

