Mathelpers

Proving Parallel Lines

Theorem 2: Converse of Alternate Interior Angles

In a plane, if two lines are cut by a transversal so that a pair of alternate interior angles is congruent, then the two lines are parallel

Theorem 2: Converse of Alternate Exterior Angles

In a plane, if two lines are cut by a transversal so that a pair of alternate exterior angles is congruent, then the two lines are parallel

Theorem 3: Converse of Consecutive Interior angles

In a plane, if two lines are cut by a transversal so that a pair of consecutive interior angles are supplementary, then the two lines are parallel

Grade 8

Mathelpers

As a summary, to prove that two lines are perpendicular, you have to prove:

- A pair of alternate interior angles are congruent
- A pair of alternate exterior angles are congruent
- A pair of corresponding angles are congruent
- A pair of consecutive interior angles are supplementary
- Two lines are perpendicular to a third line

Example 1:

Given: transversal t cuts I and n;

 $t \perp l; l \parallel n$

Prove: $t \perp n$

Statements	Reasons
1. t⊥l	1.Given
2. <i>m</i> ∠1 = 90	2. Def of \perp lines
3. I ll n	3. Given
4. ∠1 ≅ ∠2, (m∠1 = m∠2)	4. Corr.∠s Post
5. m∠2 = 90	5. Sub
6. ∴t⊥n	6. Def of \perp lines

Mathelpers.com

Example 2:

Given: I II n, m II n p is a transversal of I, m and n.

Prove: I II m

Statements	Reasons
1. I ll n	1. Given
2. ∠1 ≅ ∠3	2. Corr ∠s Post
3. m ll n	3. Given
4. ∠3 ≅ ∠2	 Corr ∠s Post
5. ∠1 ≅ ∠2	5. Trans prop
6. ∴ I II m	6. Conv Corr ∠s Post

Example 3:

Given: | || n, $m \angle 1 = m \angle 3$

Prove: p ll q

Statements	Reasons
1. n	1. Given
2. m∠1 = m∠2	2. Corr ∠s Post
3. m∠1 = m∠3	3. Given
4. m∠2 = m∠3	4. Substitution
5. ∴ pllq	5. Converse of Alt Int \angle s thm

<u>Mathelpers.com</u>