Powers and Exponents

A power is the result of a repeated multiplication of the same factor. For example, the number 125 is a power because
$125=5 \cdot 5 \cdot 5$. A power can be written in a form that has two parts: a number called the base and a number called the exponent. The exponent shows the number of times the base is used as a factor.

The table shows how to read and write powers. Numbers raised to the first power, such as 12^{1}, are usually written without the exponent.

Power	In words	Value
12^{1}	12 to the first power	$12^{1}=12$
$(0.5)^{2}$	0.5 to the second, or 0.5 squared	$(0.5)(0.5)=0.25$
4^{3}	4 to the third power, or 4 cubed	$4 \bullet 4 \bullet 4=64$
8^{4}	8 to the fourth power	$8 \bullet 8 \bullet 8 \bullet 8=4096$

Example 1: Write the product using an exponent.
A. $13 \cdot 13 \cdot 13 \cdot 13$

13 is multiplied by itself 4 times
$\Rightarrow 13$ is the base and the exponent is 4
$\Rightarrow 13 \cdot 13 \cdot 13 \cdot 13=13^{4}$
B. $(0.2)(0.2)(0.2)$
0.2 is multiplied by itself 3 times
$\Rightarrow 0.2$ is the base and the exponent is 3
$\Rightarrow(0.2)(0.2)(0.2)=(0.2)^{3}$
C. $n \bullet n \bullet n \bullet n \bullet n \bullet n$
" n " is multiplied by itself 6 times
$\Rightarrow \mathrm{n}$ is the base and the exponent is 6
$\Rightarrow n \bullet n \bullet n \bullet n \bullet n \bullet n=n^{6}$
D. $t \bullet t \bullet t \bullet t \bullet t$
t is multiplied by itself 5 times
$\Rightarrow t$ is the base and the exponent is 5
$\Rightarrow t \bullet t \bullet t \bullet t \bullet t=t^{5}$

A formula describes a relationship between quantities. Some formulas involve powers. For example, you can use a formula to find the area of a square or the volume of a cube.

$$
\mathrm{A}=s^{2}
$$

$\mathrm{V}=s^{3}$

Area is measured in square units, such as square feet ($\mathrm{ft}{ }^{2}$) or square centimeters (cm^{2}).
Volume is measured in cubic units, such as cubic inches (in. ${ }^{3}$) or cubic meters $\left(m^{3}\right)$.

