Mathelpers

Polynomials

A polynomial is a monomial, or a sum of monomials.
The expression $x^{3}+6 x^{2}+12 x+8$ is an example of a polynomial in one variable, x.
Some polynomial expressions have special names that are determined either by their degree or by the number of terms, as illustrated in the table.

Polynomial	\# of terms	Name by \# of terms	Degree	Name by degree
12	1	monomial	0	constant
$8 x$	1	monomial	1	linear
$4 x^{2}+3$	2	binomial	2	quadratic
$5 x^{3}+x^{2}$	2	binomial	3	cubic
$3 x^{2}-4 x+6$	3	trinomial	2	quadratic
$3 x^{4}-4 x^{3}+6 x^{2}+7$	4	polynomial	4	quadric

Example 1: State whether each expression is a polynomial. If the expression is a polynomial, identify it as a monomial, binomial, or trinomial.
a) $8 x^{2}-3 x y$

The expression $8 x^{2}-3 x y$ can be written as $8 x^{2}+(-3 x y)$.
Therefore, $8 x^{2}-3 x y$ is a polynomial because it can be written as the sum of two monomials, $8 x^{2}$, and $-3 x y$. Since it has two terms, $8 x^{2}-3 x y$ is a binomial.
b) $\frac{5}{2 y^{2}}-7 y+6$

The expression $\frac{5}{2 y^{2}}-7 y+6$ is not a polynomial because $\frac{5}{2 y^{2}}$ is not a monomial.
c) $3 x^{2}+2 x+4$

The expression $3 x^{2}+2 x+4$ is a polynomial because it is the sum of three monomials, $3 x^{2}, 2 x$, and 4 . Since it has three terms, $3 x^{2}+2 x+4$ is a trinomial.

The degree of a polynomial in one variable is determined by the exponent with the greatest value within the polynomial. The degree of $9-4 x^{2}$ is 2 .
To find the degree of a polynomial, first find the degree of each of its terms.
The degree of the polynomial is the greatest of the degrees of the terms.

Mathelpers

The terms of a polynomial are usually arranged so that the powers of one variable are in either ascending or descending order.

Ascending order	Descending order
$3+5 a-8 a^{2}+a^{3}$	$a^{3}-8 a^{2}+5 a+3$
(in $x) 5 x y+x^{3} y^{2}-x^{4}+x^{5} y^{2}$	(in $x) x^{5} y^{2}-x^{4}+x^{3} y^{2}+5 x y$
(in $y) x^{3}-3 x^{2} y+4 x^{2} y^{2}-y^{3}$	(in $y)-y^{3}+4 x^{2} y^{2}-3 x^{2} y+x^{3}$

However in the standard form, the terms of a polynomial are ordered from left to right in the descending order, which means from the greatest exponent to the least.

