Name:

\qquad

Polynomials

Evaluate the polynomial when $x=4$.

1) $5 x-3$
2) $2 x^{2}+x-7$
3) $x^{3}+x^{2}-6 x-8$

Evaluate the polynomial when $x=-1$ and $y=2$.
4) $4 x^{2}+3 y^{3}$
5) $x^{4}-x^{2} y$
6) $\quad-2 x^{2}+x^{2} y^{3}$
7) Your friend says that the degree of the polynomial $x^{2}+x y^{2}$ is 2 . Describe and correct your friend's error.
8) Is the polynomial $3 x^{2}+5 x^{2} y+7$ written in standard form? Explain your reasoning.
9) Give an example of a term that has degree 6 but that contains no variable with an exponent greater than 2. Explain your answer.

Write a polynomial expression for the perimeter of the figure. Give your answer in standard form.
10)

11)

12)

13)The polynomials below give the approximate braking distance (in feet) needed to stop a car or train. In each polynomial, v is the vehicle's speed in miles per hour and r is the reaction time (in seconds) of the car's driver or the train's engineer. For the question below, use $r=0.5$ second.

$$
\text { Car: } 1.47 v r+0.05 v^{2} \quad \text { Train: } 1.47 v r+0.5 v^{2}
$$

A. What is the braking distance (to the nearest foot) of a car travelling 30 miles per hour? 55 miles per hour?
B. What is the braking distance (to the nearest foot) of a train travelling 80 miles per hour? 125 miles per hour?
C. How much greater is the braking distance of a train than the braking distance of a car if both vehicles are travelling at 55 miles per hour?

Find the degree of the polynomial. Write your answer in terms of n.
14) $x^{n}+x^{n-1}+x^{n-2}$
15) $x^{n} y^{4}+5 x^{3} y^{n}$
16) $6 x^{n} y^{n}+x^{2} y^{2 n}$

