Perfect Squares and Factoring

Square of a Sum

$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(\text { first term })^{2}+$ twice the product of the first term and the sec ond term $+(\text { second term })^{2}$

Square of a Difference

$(a-b)^{2}=a^{2}-2 a b+b^{2}$
$(\text { first term })^{2}$-twice the product of the first term and the sec ond term $+(\text { second term })^{2}$
You can use these patterns to factor certain polynomials. For example:

Multiplication Form

$(x+3)^{2}=(x+3)(x+3)=x^{2}+6 x+9$

Factorization Form
$x^{2}+6 x+9=(x+3)^{2}$

Rule: A trinomial is a perfect square if:

1) The first and last terms are perfect squares.
2) The middle term is two times one factor from the first term and one factor from the last term.

Example 1: Determine if each of the following is a perfect square. If it is, factor it.

1) $16 a^{2}+72 a+81$

Is the first term a square?
Is the last term a square?

$$
\begin{aligned}
16 a^{2} & =(4 a)^{2} \\
81 & =(9)^{2} \\
72 a & =2(4 a)(9)
\end{aligned}
$$

Is the middle term twice
the product of 4 a and 9 ?
$16 a^{2}+72 a+81$ is a perfect square.
$16 a^{2}+72 a+81=(4 a)^{2}+2(4 a)(9)+(9)^{2}=(4 a+9)^{2}$
2) $4 a^{2}-20 a+15$

Is the first term a square? $\quad 4 a^{2}=(2 a)^{2}$
Is the last term a square? $\quad 15$ is not a perfect square number.
$4 a^{2}-20 a+15$ is not a perfect square.
3) $16 x^{2}-26 x+49$

Is the first term a square?
Is the last term a square?

$$
\begin{aligned}
16 x^{2} & =(4 x)^{2} \\
49 & =(7)^{2} \\
26 x & \neq 2(4 x)(7)
\end{aligned}
$$

Is the middle term 2 times
the product of $4 x$ and 7 ?
$16 x^{2}-26 x+49$ is not a perfect square.
4) $x^{2}-20 x-100$

Is the first term a square? $\quad x^{2}=(x)^{2} \quad$ Yes Is the last term a square? $\quad-100 \neq(-10)^{2}$ $x^{2}-20 x-100$ is not a perfect square.

