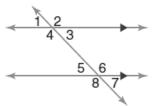
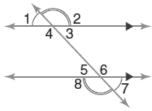

Parallel Lines and Special Angles


Theorem 1: Alternate Interior Angles

If two lines are cut by a transversal, then each pair of alternate angles is congruent

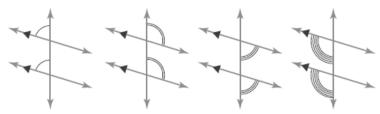
Theorem 2: Consecutive Interior angles

If two lines are cut by a transversal, then each pair of consecutive interior angles is supplementary

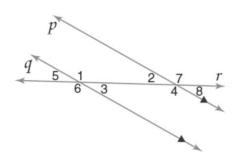


$$m \angle 3 + m \angle 6 = 180^{\circ}$$

$$m \angle 4 + m \angle 5 = 180^{\circ}$$


Theorem 3: Alternate Exterior angles

If two lines are cut by a transversal, then each pair of alternate exterior angles is congruent


Postulate

If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent

Mathelpers

Example 1: In the figure, $p \square q$, and r is a transversal. If $m \angle 5 = 28^{\circ}$, find :

a) *m*∠1

$$\angle 1$$
 and $\angle 5$ are supplementary angles

$$m\angle 1 + m\angle 5 = 180^{\circ}$$

$$\Rightarrow m \angle 1 = 180^{\circ} - m \angle 5$$

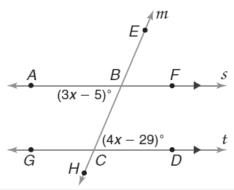
$$\Rightarrow m \angle 1 = 180^{\circ} - 28^{\circ} = 152^{\circ}$$

b) $m \angle 2$

 $\angle 5$ and $\angle 2$ are corresponding angles

$$\angle 5 \cong \angle 2$$

$$\Rightarrow m\angle 2 = m\angle 5 = 28^{\circ}$$


c) *m*∠8

 $\angle 5$ and $\angle 8$ are alternate exterior angles

$$\angle 5 \cong \angle 8$$

$$\Rightarrow m\angle 8 = m\angle 5 = 28^{\circ}$$

Example 2: In the figure, $s \Box t$, and m is a transversal. find x

 $\angle ABC$ and $\angle BCD$ are alternate interior angles

$$\angle ABC \cong \angle BCD$$


$$\Rightarrow m \angle ABC = m \angle BCD$$

$$\Rightarrow$$
 3 x – 5 = 4 x – 29

$$\Rightarrow$$
 29 – 5 = 4 x – 3 x

$$\Rightarrow$$
 24 = x

Example 3: In the figure, $p \Box q$, and transversal r is perpendicular to q. If $m\angle 2 = 3x - 6$, find x

$$r \perp q$$

 \Rightarrow The angles formed is a right angles and $p \square q$

$$\implies m\angle 2 = 3x - 6 = 90^{\circ}$$

$$\Rightarrow 3x - 6 = 90^{\circ}$$

$$\Rightarrow$$
 3 $x = 96$

$$\Rightarrow x = \frac{96}{3} = 32$$