Mathelpers

Order and Compare Fractions

Equivalent Fractions have the same value, even though they may look different.
These fractions are really the same:

$$
\frac{1}{3}=\frac{2}{6}=\frac{3}{9}
$$

Why are they the same?

Because when you multiply or divide both the top and bottom by the same number, the fraction keeps its value.

The rule to remember is:

You can multiply or divide the numerator and the denominator by the same number to obtain equivalent fractions

So, here is why those fractions are really the same:

Dividing

Here are some more equivalent fractions, this time by dividing:

Examples:

A- Write two equivalent fractions for each.

D) $\frac{2}{7}$
$\frac{2}{7}=\frac{4}{14} \quad$ multiply up and down 2
$\frac{2}{7}=\frac{6}{21} \quad$ multiply up and down 3
2) $\frac{4}{16}$
$\frac{4}{16}=\frac{2}{8} \quad$ divide up and down by 2
$\frac{4}{16}=\frac{1}{4} \quad$ divide up and down by 4
3) $\frac{1}{9}$
$\frac{1}{9}=\frac{2}{18} \quad$ multiply up and down by 2
$\frac{1}{9}=\frac{5}{45} \quad$ multiply up and down by 5
B- Find the missing numerator or denominator.
4) $\frac{3}{7}=\frac{18}{}$
$\frac{3}{7}=\frac{18}{} \quad$ to obtain 18 from 3 we multiply by 6
so, the missing denominator $=7 \times 6=42$
$\Rightarrow \frac{3}{7}=\frac{18}{42}$
5) $\frac{9}{11}=\frac{45}{}$
$\frac{9}{11}=\frac{45}{} \quad$ to obtain 45 from 9 we multiply by 5
so, the missing denominator $=11 \times 5=55$
$\Rightarrow \frac{9}{11}=\frac{45}{55}$

Mathelpers

You can compare and order fractions that have the same denominators.

Compare $\frac{2}{5}$ and $\frac{3}{5}$
Compare the shaded areas in the fraction model.
$\frac{2}{5} \quad \frac{3}{5}$

$$
2<3 \text {, so } \frac{2}{5}<\frac{3}{5}
$$

You can also compare fractions that have different denominators.
Compare $\frac{2}{3}$ and $\frac{1}{2}$

Compare the shaded areas in the fraction model. $\frac{2}{3} \quad \frac{1}{2}$

Since $\frac{2}{3}$ has a larger shaded area,

$\frac{2}{3}>\frac{1}{2}$

Examples:

C- Order the fractions from least to greatest.
6) $\frac{2}{4}, \frac{2}{6}, \frac{2}{10}$
$\frac{2}{4}, \frac{2}{6}, \frac{2}{10}$
Compare the numerators: $2=2=2$
Compare the denominators: $4<6<10$
$\Rightarrow \frac{2}{10}, \frac{2}{4}, \frac{2}{6}$
7) $\frac{3}{5}, \frac{4}{9}, \frac{7}{45}$
$\frac{3}{5}, \frac{4}{9}, \frac{7}{45}$
Compare the numerators: all different
Compare the denominators: all different
So,here we need to wirte the equivalent fractions to compare

$$
\left.\begin{array}{l}
\frac{3}{5}=\frac{27}{45} \\
\frac{4}{9}=\frac{20}{45} \\
\frac{7}{45}
\end{array}\right\} 27>20>7 \Rightarrow \frac{27}{45}>\frac{20}{45}>\frac{7}{45}
$$

Compare the numerators: all different
Compare the denominators: all different
So,here we need to wirte the equivalent fractions to compare
$\frac{5}{8}=\frac{15}{24}$
$\left.\frac{1}{6}=\frac{4}{24}\right\} 18>15>4 \Rightarrow \frac{18}{24}>\frac{15}{24}>\frac{4}{24}$
$\frac{3}{4}=\frac{18}{24}$
$\Rightarrow \frac{1}{6}, \frac{5}{8}, \frac{3}{4}$

