Monomials

Definition: A monomial is a number, a variable, or a product of a number and one or more variables.

These are monomials., $-7, y, 7 k,-2 x^{3}, \frac{1}{4} a b^{2} c^{3} d^{4}$
These are not monomials. $a+b, \frac{x}{y}, 7-2 x^{3}, \frac{1}{x^{2}}, \frac{3 m}{4 n}$
Note: Monomials that are real numbers are called constants.
Rule: The degree of a monomial is the sum of the exponents of its variables. The real number multiplied by the variable is called the coefficient.

Example 1: Determine whether each expression is a monomial. If it is, find its coefficient and degree.

Expression	Monomial or not	Coefficient	Degree
x	Monomial	1	1
$3 x^{5}$	Monomial	3	5
$-2 x^{3} y$	Monomial	-2	$3+1=4$
$\frac{2}{3} a^{3} b^{2} c^{4} d$	Monomial	$\frac{2}{3}$	$3+2+1+4=10$
$\frac{1}{x^{2}}$	Not monomial		
$10+2 x^{3}$	Not monomial		
$\frac{2 x^{2}}{5 y^{3}}$	Not monomial		

Consider the following statements.

$$
\begin{array}{ll}
4 \bullet 8=32 & 2 \cdot 32=64 \\
2^{2} \cdot 2^{3}=2^{5} & 2^{1} \cdot 2^{5}=2^{6}
\end{array}
$$

These examples suggest that you can multiply powers that have the same base by adding their exponents.

Product of Powers

$a^{m} \bullet a^{n}=a^{m+n}$ where \mathbf{a} is any real number and \mathbf{m} and \mathbf{n} are integers

Take a look at the example below.
$\left(5^{2}\right)^{3}=5^{2} \cdot 5^{2} \cdot 5^{2}=5^{6}$
Since $\left(5^{2}\right)^{3}=5^{6}$, the example suggests that you can find the power of a power by multiplying exponents

Power of a Power

$\left(a^{m}\right)^{n}=a^{m n}$ where \mathbf{a} is any real number and m and n are integers.

Take a look at the example below.
$(x y)^{3}=(x y)(x y)(x y)=(x \bullet x \bullet x)(y \bullet y \bullet y)=x^{3} y^{3}$

Power of a Product

$(a b)^{m}=a^{m} b^{m}$ where \mathbf{a} is any real number and \mathbf{m} is an integer

Power of a monomial

$\left(a^{m} b^{n}\right)^{p}=a^{m p} b^{n p}$ where is any real number and \mathbf{m}, \mathbf{n} and \mathbf{p} are integers.

Consider the following quotients.
$\frac{32}{8}=4 \quad \frac{64}{4}=16$
$\frac{2^{5}}{2^{3}}=2^{2} \quad \frac{2^{6}}{2^{2}}=2^{4}$

Quotients of Powers

$\frac{a^{m}}{a^{n}}=a^{m-n} \quad$ where a is any real number and m is an integer

Consider the following quotients.
$\frac{2^{3}}{2^{3}}=\frac{\not 2 \cdot \not 2 \cdot \not 2 \cdot \not 2}{\not 2 \cdot \not 2 \cdot \not 2}=1 \quad \frac{2^{3}}{2^{3}}=2^{0}$

Zero Exponent

For any non-zero real number a, $a^{0}=1$

Note: 0^{0} is not defined
Study the two ways shown below.

$$
\frac{2^{2}}{2^{5}}=\frac{\not 2 \cdot \not 2}{\not 2 \cdot \not 2 \cdot 2 \cdot 2 \cdot 2}=\frac{1}{2^{3}} \quad \frac{2^{2}}{2^{5}}=2^{-3}
$$

Negative Exponents

For any non-zero real number a, $a^{-m}=\frac{1}{a^{m}}$

