Factoring x²+bx+c

In this lesson you will learn how to factor a trinomial into two binomials.

Take a look at the following example.

$$(x+3)(x+4) = x^2 + 3x + 4x + 12 = x^2 + 7x + 12$$

Notice that 12 is the product of 3 and 4 and 7 is the sum of 3 and 4.

To factor a quadratic trinomial of the form $x^2 + bx + c$, find two factors of c whose sum is b.

Notes: Factoring $x^2 + bx + c$

- 1) If c is positive, both factors have the same signs (both are positive or negative). Take both signs positive if b is positive and take both signs negative if b is negative.
- 2) If c is negative, the factors have the different signs (one is positive and the other is negative). The sign of the bigger factor takes the sign of the sum.

Example 1: Factor each of the following trinomials if possible.

1)
$$x^2 + 8x + 12$$

Factor of 12	Sum
1,12	13
2,6	8
3,4	7

$$x^2 + 8x + 12 = (x+2)(x+6)$$

2)
$$x^2 - x - 12$$

Factor of 12	Sum
-1,12	11
1,-12	-11
-2,6	4
2,-6	-4
-3,4	1
3,-4	-1

$$x^2 - x - 12 = (x - 4)(x + 3)$$

3)
$$x^2 - 7x + 12$$

Factor of 12	Sum
-1,-12	-13
-2,-6	-8
-34	-7

$$x^2 - 7x + 12 = (x-4)(x-3)$$

4)
$$x^2 + 10x + 12$$

Factor of 12	Sum
1,12	13
2,6	8
3,4	7

 $x^2 + 10x + 12$ is prime(not factorable using integers).

Example 2: Find all the values of k so that the trinomial $x^2 + kx + 18$ can be factored using integers.

Factor of 18	Sum
1,18	19
-1,-18	-19
2,9	11
-2,-9	-11
3,6	9
-3,-6	-9

$$k = 19, -19, 11, -11, 9, -9$$

Find all values of k so that each trinomial can be factored using integers.