Mathelpers

Factoring $x^{2}+b x+c$

In this lesson you will learn how to factor a trinomial into two binomials.
Take a look at the following example.
$(x+3)(x+4)=x^{2}+3 x+4 x+12=x^{2}+7 x+12$
Notice that 12 is the product of 3 and 4 and 7 is the sum of 3 and 4 .
To factor a quadratic trinomial of the form $x^{2}+b x+c$, find two factors of c whose sum is b .
Notes: Factoring $x^{2}+b x+c$

1) If c is positive, both factors have the same signs (both are positive or negative). Take both signs positive if b is positive and take both signs negative if b is negative.
2) If c is negative, the factors have the different signs (one is positive and the other is negative). The sign of the bigger factor takes the sign of the sum.

Example 1: Factor each of the following trinomials if possible.

1) $x^{2}+8 x+12$

Factor of 12	Sum
1,12	13
2,6	8
3,4	7

$$
x^{2}+8 x+12=(x+2)(x+6)
$$

2) $x^{2}-x-12$

Factor of 12	Sum
$-1,12$	11
$1,-12$	-11
$-2,6$	4
$2,-6$	-4
$-3,4$	1
$3,-4$	-1

$x^{2}-x-12=(x-4)(x+3)$
3) $x^{2}-7 x+12$

Factor of 12	Sum
$-1,-12$	-13
$-2,-6$	-8
$-3,-4$	-7

$x^{2}-7 x+12=(x-4)(x-3)$
4) $x^{2}+10 x+12$

Factor of 12	Sum
1,12	13
2,6	8
3,4	7

$x^{2}+10 x+12$ is prime(not factorable using integers).

Example 2: Find all the values of \boldsymbol{k} so that the trinomial $x^{2}+k x+18$ can be factored using integers.

Factor of 18	Sum
1,18	19
$-1,-18$	-19
2,9	11
$-2,-9$	-11
3,6	9
$-3,-6$	-9

$k=19,-19,11,-11,9,-9$
Find all values of k so that each trinomial can be factored using integers.

