Factoring using Distributive Property and GCF

Recall that the distributive property states that $a b+a c=a(b+c)$. The distributive property allows you to factor out the GCF of the terms of a polynomial to write a factored form of the polynomial.

A polynomial is in its factored form when it is written as a product of monomials and polynomials that cannot be factored further.

As you now you can write any number bigger than one as a product of prime factors. For example $10=2 \bullet 5 \quad 12=2 \bullet 2 \bullet 3 \quad 15=3 \bullet 5$

Notes: To find GCF of 2 numbers a and b

1) If a is multiple of b, then the GCF is b.

For example 10 is a multiple of 5 , so the GCF is 5 , and30 is a multiple of 15 , so the GCF is 15 .
2) If a and b are relatively prime numbers (no common factor other than 1), the GCF is 1 .

For example 7 and 8 are relatively prime numbers, so the GCF is 1.11 and 15 are relatively prime numbers, so the GCF is 1 .

Rule: To find GCF of the variables of monomials, take the least common power of each variable. For example the GCF of $x^{2} \& x^{5}$ is x^{2}. The GCF of $x y^{2} \& x^{4} y^{3}$ is $x y^{2}$

Example 1: Find the GCF of the following monomials.

$$
\begin{aligned}
& \text { 1) } x y^{3} \quad \& x^{2} y^{5} \\
& \text { GCF }=x y^{3} \\
& \text { 2) } 4 a^{3} b^{3} \quad \& 20 a^{2} b^{4} \\
& \text { GCF }=4 a^{2} b^{3} \\
& \text { 3) } 4 a^{2} b^{4} c^{2} \quad \& 5 a^{2} b^{3} c^{5} \\
& \text { GCF }=a^{2} b^{3} c^{2} \\
& \text { 4) } 25 a b^{2} c^{3} \& 25 a^{2} b^{3} \\
& \text { GCF }=25 a b^{2}
\end{aligned}
$$

Take a look at the following.

Multiplying using distributive property
$m(k-l)=m k-m l$
$2(x+3)=2 x+6$

