Mathelpers

Factoring using Distributive Property and GCF

Recall that the distributive property states that ab+ac=a(b+c). The distributive property allows you to factor out the GCF of the terms of a polynomial to write a factored form of the polynomial.

A polynomial is in its factored form when it is written as a product of monomials and polynomials that cannot be factored further.

As you now you can write any number bigger than one as a product of prime factors. For example $10=2 \cdot 5$ $12=2 \cdot 2 \cdot 3$ $15=3 \cdot 5$

Notes: To find GCF of 2 numbers a and b

1) If a is multiple of b, then the GCF is b. For example 10 is a multiple of 5, so the GCF is 5, and 30 is a multiple of 15, so the GCF is 15.

2) If a and b are relatively prime numbers (no common factor other than 1), the GCF is 1. For example 7 and 8 are relatively prime numbers, so the GCF is 1. 11 and 15 are relatively prime numbers, so the GCF is 1.

Rule: To find GCF of the variables of monomials, take the least common power of each variable. For example the GCF of $x^2 \& x^5$ is x^2 . The GCF of $xy^2 \& x^4y^3$ is xy^2

Example 1: Find the GCF of the following monomials.

1) xy^{3} & $x^{2}y^{5}$ GCF= xy^{3} 2) $4a^{3}b^{3}$ & $20a^{2}b^{4}$ GCF= $4a^{2}b^{3}$ 3) $4a^{2}b^{4}c^{2}$ & $5a^{2}b^{3}c^{5}$ GCF= $a^{2}b^{3}c^{2}$ 4) $25ab^{2}c^{3}$ & $25a^{2}b^{3}$ GCF= $25ab^{2}$

Take a look at the following.

Multiplying using distributive property Factoring using distributive property

m(k-l) = mk - ml

mk - ml = m(k - l)

2(x+3) = 2x+6

2x+6=2(x+3)Mathelpers.com

Grade 8