Factoring $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$

When you multiply $(2 x+5)(3 x+2)$, the coefficent of the x^{2} - term (a) is the product of the coefficents of the x -terms. The constant (c) term in the trinomial is the product of the constants in the binomials. The coefficent of the x-term (b) is the sum of the products of the inner and outer terms.
$(2 x)(3 x)=6 x^{2}=a$
(5) $(2)=10=c$
(2) $(2 x)+(5)(3 x)=4 x+15 x=19 x=b$

To factor $a x^{2}+b x+c$ using the trial method, check the factors of a and the factors of c. The sum of the products of the inner and the outer terms should be b.

Example 1: Factor $4 x^{2}+16 x+15$

$$
4 x^{2}+16 x+15=(\square+\square)(\square+\square)
$$

Factors of 4	Factors of 15	Outer + Inner
1,4	1,15	$1(1)+4(15)=61$
1,4	15,1	$1(15)+4(1)=19$
1,4	3,5	$1(3)+4(5)=23$
1,4	5,3	$1(5)+4(3)=17$
2,2	1,15	$2(1)+2(15)=32$
2,2	3,5	$2(3)+2(5)=16$

$$
4 x^{2}+16 x+15=(2 x+3)(2 x+5)
$$

Another method can be used to factor such trinomials.
To factor $4 x^{2}+16 x+15$, first find the product of 4 and 15 .
The product of 4 and 15 is 60 . So, you need to find two numbers whose product is 60 and their sum is 16 .

Factors of 60	Sum
1,60	61
2,30	32
3,20	23
4,15	19
5,12	17
6,10	16

$4 x^{2}+16 x+15$
$=4 x^{2}+(6+10) x+15 \quad$ Select 6 and 10
$=4 x^{2}+6 x+10 x+15$
$=\left(4 x^{2}+6 x\right)+(10 x+15) \quad$ Group terms.
$=2 x(2 x+3)+5(2 x+3) \quad$ Factor out the GCF for each group.
$=(2 x+5)(2 x+3) \quad$ Factor out the GCF.

