Mathelpers

Divisibility

The rules for divisibility are:

A number is divisible by:	If:
$\mathbf{2}$	The last digits is $2,4,6,8$ or 0
3	The sum of digits is divisible by 3.
$\mathbf{4}$	The number formed by the last two digits is divisible by 4.
$\mathbf{5}$	The last digit is 0 or 5
$\mathbf{6}$	It is divisible by 2 and 3 at the same time.
8	The number formed by the last three digits is divisible by 8.
9	The sum of digits is divisible by 9.
10	The last digit is 10.

Examples:

A- Tell whether each number is divisible by $2,3,4,5,6,8,9$, or 10.

1) 432

Divisible by 2: Look at the last digit, it is $2 \rightarrow$ It is divisible by 2.
Divisible by 3 : Add the digits $4+3+2=9,9 \div 3=3$ it is divisible by 3 .
Divisible by 4: Look at the last two digits: $32 \div 4=9 \rightarrow$ It is divisible by 4 .
Divisible by 5: Look at the last digit, it is $2 \rightarrow$ It is not divisible by 5 .
Divisible by 6: 432 is divisible by 3 and 2 , so it is divisible by 6 .
Divisible by 8: $432 \div 8=54$.
Divisible by 9 : Add the digits $4+3+2=9,9 \div 9=1 \rightarrow$ It is divisible by 9 .
Divisible by 10: Look at the last digit, it is $2 \rightarrow$ It is not divisible by 10.
2) 765

Divisible by 2: Look at the last digit, it is $5 \rightarrow$ It is not divisible by 2.
Divisible by 3 : Add the digits $7+6+5=18,18 \div 3=6$ it is divisible by 3 .
Divisible by 4: Look at the last two digits: $65 \div 4=--\rightarrow$ It is not divisible by 4 .
Divisible by 5: Look at the last digit, it is $5,765 \div 5=153 \rightarrow$ It is divisible by 5 .
Divisible by 6: 765 is divisible by 3 but not 2 , so it is not divisible by 6 .
Divisible by $8: 765 \div 8=--\rightarrow$ It is not divisible by 8 .
Divisible by 9 : Add the digits $7+6+5=18,18 \div 9=2 \rightarrow$ It is divisible by 9 .
Divisible by 10: Look at the last digit, it is $5 \rightarrow$ It is not divisible by 10.
B- For the U.A.E. National Day, the number of marching sixth graders is 168 students. Can the students be organized in $\mathbf{6}$ groups?

$$
168 \div 6=28 \text { students }
$$

Sixth graders can be divided in $\mathbf{6}$ groups of 28 students each.

