Distance, Segment, and Rays

To find the distance between any two points on a line, it is necessary to agree upon a measuring device or ruler. Pick any two points P and Q on a line, with Q to the right of P. Assign the number 0 to P and the number 1 to Q .

The distance from P to Q is 1 . Write $\mathrm{PQ}=1$ or $\mathrm{QP}=1$.
PQ or QP mean "the distance between P and Q ". Using PQ as a reference; the set of real numbers can now be associated with points on the number line. When this is done, the line is called a number line.

Below, point Q corresponds to 1 , which is called the coordinate of Q . The coordinate of a point on a number line is the number associated with that point.

On the line above, the distance between the two points W and F with coordinates -1 and 2, respectively, is equal to the absolute value of the difference of their coordinates.
$W F=|2-(-1)|=|3|=3$, or $W F=|-1-2|=|-3|=3$
Definition 1
The distance between any two points A and B with coordinates m and n is

$$
|m-n| \text { or }|n-m| \text {. }
$$

The ideas above are summarized in the Ruler Postulate. A postulate is a statement that is accepted without proof.

Postulate 1: Ruler Postulate

The points on a line can be paired with real numbers so that, given any two points $\mathrm{P} \& \mathrm{Q}$ on the line, P corresponds to zero and Q corresponds to a positive number.

Example 1: Find the distance $A B, C D$ and $A E$ using the given number line below.

a) $A B=|1-(-4)|=|1+4|=|5|=5$
b) $C D=|2-\pi|=|2-3.14|=|-1.14|=1.14$
c) $A E=|-4-4|=|-8|=8$

In the figure, C is between A and B. There are an infinite number of points between A and B.

Definition 2

A segment is a part of a line that begins at one point and ends at another. The points are called the endpoints of the segment.
Either AB or BA can be used to name the segment.

Notes

1) $A B$ is the set of points.
2) $A B$ is the distance between points A and B, which is a number.
3) The length of $A B$ is $A B$ - the distance between A and B.

In the figure below, C is between A and B .

$A E=4$
$\mathrm{EH}=5$
$A E=9$
$4+5=9$ Therefore, $A E+E H=A B$

This suggests the Segment Addition Postulate

Example 2: Points A, G and R are collinear. Point R is between A and G.
Draw a diagram. Use the Segment Addition Postulate to write an equation.

Point A can be placed either to the left or to the right of point R.

The equation is $A R+R G=A G$
or

$G R+R A=G A$.

Example 3: G, R, and A are three collinear points such that A is between G and R.
$G A=\frac{3}{5} A R$ and $G R=24$. Find $A R$ and $G R$.
Let $\mathrm{AR}=x \Rightarrow \mathrm{GR}=\frac{3}{5} x$
$G A+A R=G R \quad$ Write the equation using segment addition postulate
$\frac{3}{5} x+x=24 \quad$ Substitute GA and AR
$3 x+5 x=120 \quad$ Multiply the equation by 5
$8 x=120$
$x=15$
$A R=x=15$
$G A=\frac{3}{5} x=\frac{3}{5}(15)=9$

Mathelpers

Definition 3

A ray is a part of a line that starts at a point and extends infinitely in one direction. The point is called the endpoint of the ray.
The symbol $\overrightarrow{X Y}$ is used to name the ray.

Note: $\overrightarrow{S R}$ and $\overrightarrow{R T}$ are called opposite rays if S is between R and T .

It is often possible to name a ray in more than one way. However, the first letter always names the endpoint of the ray, and the arrow above the two letters points to the right.

Example 4: Refer to the diagram to name:

a) Two segments having E as an endpoint

Possible names for the segments are $\overline{E D}, \overline{E A}, \overline{E F}, \overline{E B}$.
b) Three rays having F as an endpoint

Possible names for the ray are $\overrightarrow{F C}, \overrightarrow{F E}, \overrightarrow{F D}, \overrightarrow{F A}$.
c) Two points in between points A and G

Possible points are D, E, C, and F

