Congruent Segments

In the figure below, the two segments \overline{AB} and \overline{CD} have the same length. The segment are said to be congruent. The symbol for congruence is \cong .The symbol $\not\equiv$ is read "is not congruent to".

Definition 1

Congruent (≅) segments are segments that have the same length.

 \overline{AB} and \overline{CD} is read "is \overline{AB} congruent to \overline{CD} ".

In the figure, marking sticks (tick marks) are used to indicate that \overline{AB} and \overline{CD} are congruent. You should not assume congruence of segments unless they are indicated as congruent.

By definition, *congruent segments* are segments that have the *same length*. Therefore, the statements \overline{AB} and \overline{CD} and AB = CD are equivalent.

Definition 2

The midpoint, C of \overline{AB} is the point between A and B such that AC = CB.

Definition 3

A segment bisector is a line that divides a segment into two congruent parts. The point where a bisector intersects a segment is the midpoint of the segment.

 \overrightarrow{CD} bisect \overrightarrow{PG} at E

 \Rightarrow E is the midpoint of \overline{PG}

 $\Rightarrow \overline{PE} \cong \overline{EG}$

Postulate 1: Midpoint Postulate

A segment has one and only one midpoint.

Example 1: M is the midpoint of \overline{AB} . Find the value of x.

M is the midpoint of \overline{AB}

$$AM = MB$$

$$5x + 3 = 33$$

$$5x = 30$$

$$x = 6$$

It is possible to find the coordinate of the midpoint of a segment when the coordinates of the endpoints are given.

The general formula for finding the coordinate of the midpoint of a segment when the coordinates of the endpoints are given is stated below.

Midpoint Formula

The coordinate, m, of the midpoint of a line segment whose endpoints have coordinates a and b is $m=\frac{a+b}{2}$.

Example 2: M is the midpoint of AB. Find the coordinates of points A and B.

$$6 = \frac{x - 4 + x + 2}{2}$$

$$6 = \frac{2x - 2}{2}$$

$$12 = 2x - 2$$

$$14 = 2x$$

$$7 = x$$

Coordinate of point A: x-4=7-4=3

Coordinate of point B: x+2=7+2=9

Example 3:

Given: AB=BC, C is the midpoint of BD

Prove: AB=CD

Statements	Reasons
1) AB=BC	1) Given
2) BC=CD	2) Definition of a midpoint
3) AB=CD	3) Transitive