Area of Parallelograms and Trapezoids

The base of a parallelogram is the length of any of its sides.
The height of a parallelogram is the perpendicular distance between the side whose length is the base and the opposite side. The diagrams below show how to change a parallelogram into a rectangle with the same base, height, and area as the parallelogram.

Notice that the area of the rectangle above is the product of the base b and the height h. The diagram suggests the formula below.

The area A of a parallelogram is the product of the base b and the height h.
Algebra $A=b h \quad$ Numbers $A=6 \bullet 8=48 \mathrm{~m}^{2}$

Example 1: The base of a parallelogram is 5 centimeters. The height is twice the base. Find the area of the parallelogram.

Find the height: $h=2 b=2(5)=10 \mathrm{~cm}$
Find the area: $A=b h=5(10)=50 \mathrm{~cm}^{2}$

The parallelogram has an area of 50 square centimeters.
The bases of a trapezoid are the lengths of any of its parallel sides.
The height of a trapezoid is the perpendicular distance between the sides whose lengths are the bases. The diagram below shows how two congruent trapezoids with height h and bases b_{1} and b_{2} can be put together to form a parallelogram with base $b_{1}+b_{2}$ and height h.

Notice that the area of the parallelogram is twice the area of either trapezoid. This suggests the formula below.

The area A of a trapezoid is one half the product of the sum of the bases, b_{1} and b_{2}, and the height, h.

Algebra: $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$

Numbers: $A=\frac{1}{2}(5+7) 4=24 \mathrm{~cm}^{2}$

