Angles formed by Parallel Lines and Transversal

Step 1: Use a straightedge to darken any two horizontal lines on a piece of lined paper.

Step 2: Draw a transversal for the lines and label the angles 1 through 8. Use a protractor to find the measure of each angle.

Theorem 2: Consecutive Interior angles
If two lines are cut by a transversal, then each pair of consecutive interior angles is supplementary

$$
\begin{aligned}
& m \angle 3+m \angle 6=180^{\circ} \\
& m \angle 4+m \angle 5=180^{\circ}
\end{aligned}
$$

Theorem 3: Alternate Exterior angles

If two lines are cut by a transversal, then each pair of alternate exterior angles is congruent

$\angle 1 \cong \angle 7$
$\angle 2 \cong \angle 8$

Postulate 1

If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent

Example 1: In the figure, $p \square q$, and r is a transversal. If $m \angle 5=28^{\circ}$, find :

a) $m \angle 1$
$\angle 1$ and $\angle 5$ are supplementary angles
$m \angle 1+m \angle 5=180^{\circ}$
$\Rightarrow m \angle 1=180^{\circ}-m \angle 5$
$\Rightarrow m \angle 1=180^{\circ}-28^{\circ}=152^{\circ}$
b) $m \angle 2$
$\angle 5$ and $\angle 2$ are corresponding angles
$\angle 5 \cong \angle 2$
$\Rightarrow m \angle 2=m \angle 5=28^{\circ}$
c) $m \angle 8$
$\angle 5$ and $\angle 8$ are alternate exterior angles
$\angle 5 \cong \angle 8$
$\Rightarrow m \angle 8=m \angle 5=28^{\circ}$

