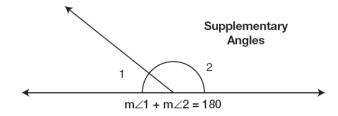
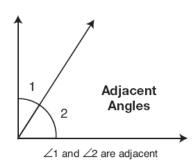
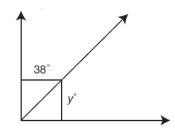

Angle Relationships


Complementary Angles

Two angles are complementary if the sum of their measures is 90°.

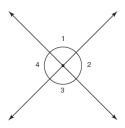


Supplementary Angles


Two angles are **supplementary** if the sum of their measures is 180°.

Adjacent angles have the same vertex, share one side, and do not overlap.

Example 1: Which of the following must be the value of y?


- **a.** 20
- **b**. 52
- **c.** 90
- **d**. 142
- e. 180

Answer

b. The figure shows two complementary angles, which means the sum of the angles equals 90°. If one of the angles is 38°, then the other angle is (90° - 38°). Therefore, $y^{\circ} = 90^{\circ} - 38^{\circ} = 52^{\circ}$, so $y = 52^{\circ}$.

Angles of Intersecting Lines

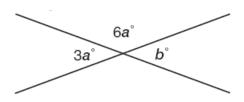
When two lines intersect, **vertical angles** are formed. In the figure below, $\angle 1$ and $\angle 3$ are vertical angles and $\angle 2$ and $\angle 4$ are vertical angles.

Vertical angles have equal measures:

$$m \angle 1 = m \angle 3$$

$$m \angle 2 = m \angle 4$$

Vertical angles are supplementary to adjacent angles. The sum of a vertical angle and its adjacent angle is 180°:


$$m \angle 1 + m \angle 2 = 180^{\circ}$$

$$m \angle 2 + m \angle 3 = 180^{\circ}$$

$$m \angle 3 + m \angle 4 = 180^{\circ}$$

$$m \angle 1 + m \angle 4 = 180^{\circ}$$

Example 2: What is the value of b in the figure above?

- **a.** 20
- **b.** 30
- c. 45
- **d.** 60
- e. 120

Answer

d. The drawing shows angles formed by intersecting lines. The laws of intersecting lines tell us that $3a^\circ = b^\circ$ because they are the measures of opposite angles. We also know that $3a^\circ + 6a^\circ = 180^\circ$ because $3a^\circ$ and $6a^\circ$ are measures of supplementary angles. Therefore, we can solve for a:

$$9a = 180$$

$$a = 20$$

Because $3a^{\circ} = b^{\circ}$, we can solve for b by substituting 20 for a:

$$3a = b$$

$$3(20) = b$$

$$60 = b$$