Adjacent Angles and Angle Bisector

The figures below show examples of **adjacent** and **not adjacent** angles respectively. **Adjacent angles**

 \angle BAC and \angle DAC are adjacent angles.

 \angle FEH and \angle HEG are adjacent angles.

Not adjacent angles

 \angle BAC and \angle DAI are non adjacent angles.

 \angle FEH and \angle HJK are non adjacent angles.

 \angle MLN and \angle MLO are non adjacent angles.

The figure at the right shows adjacent angles, $\angle ABD$ and $\angle DBC$. The common side of the angles is \overrightarrow{BD} . The rays \overrightarrow{BA} and \overrightarrow{BC} are called the outer rays of the angles. Notice that $m \angle ABC = 40 + 20$, or 60.

This suggests the following postulate.

Mathelpers

Use the angle addition postulate to write an equation

 $m \angle 1 + m \angle 2 = m \angle AOC$ $m \angle 1 + 50 = 110$ $m \angle 1 = 110 - 50$ $m \angle 1 = 60$

Example 2: Given $m \angle AOC = 140$, $m \angle 1 = \frac{2}{3}m \angle 2$. Find $m \angle 1$ and $m \angle 2$

Use the angle addition postulate to write an equation.

Let
$$m \angle 2 = x \implies m \angle 1 = \frac{2}{3}x$$

 $m \angle 1 + m \angle 2 = m \angle AOC$
 $\frac{2}{3}x + x = 140$
 $\frac{5}{3}x = 140$
 $x = 140 \cdot \frac{3}{5}$
 $x = 84$
 $m \angle 1 = \frac{2}{3}x = \frac{2}{3} \cdot 84 = 56$
 $m \angle 2 = x = 84$

Mathelpers

Consider the figure given at the right.

$$m \angle AOB = m \angle BOC = 30 \Rightarrow \angle AOB \cong \angle BOC$$

 \overrightarrow{OC} bisects $\angle AOC$

Postulate Angle Bisector Postulate Every angle, except a straight angle, has exactly one bisector.

Example 3: Given that OZ bisects $\angle XOY$, $m \angle XOZ = 5x + 4, m \angle YOZ = 7x - 10$. Find $m \angle XOZ$

 $m \angle XOZ = m \angle YOZ$ Definition of angle bisector.

5x + 4 = 7x - 1010 + 4 = 7x - 5x14 = 2x7 = x

 $m \angle XOZ = 5x + 4 = 5 \bullet 7 + 4 = 39$