Adjacent Angles and Angle Bisector

The figures below show examples of adjacent and not adjacent angles respectively. Adjacent angles

$\angle \mathrm{BAC}$ and $\angle \mathrm{DAC}$ are adjacent angles. $\quad \angle \mathrm{FEH}$ and $\angle \mathrm{HEG}$ are adjacent angles.
Not adjacent angles

$\angle \mathrm{BAC}$ and $\angle \mathrm{DAI}$ are non adjacent angles.
$\angle \mathrm{FEH}$ and $\angle \mathrm{HJK}$ are non adjacent angles.
$\angle \mathrm{MLN}$ and $\angle \mathrm{MLO}$ are non adjacent angles.

Definition 1

Adjacent angles are two angles in a plane that have a common vertex and a common side but no common interior points.

The figure at the right shows adjacent angles, $\angle \mathrm{ABD}$ and $\angle \mathrm{DBC}$. The common side of the angles is $\overrightarrow{B D}$. The rays $\overrightarrow{B A}$ and $\overrightarrow{B C}$ are called the outer rays of the angles.
Notice that $\mathrm{m} \angle \mathrm{ABC}=40+20$, or 60 .

This suggests the following postulate.

Example 1: Given $m \angle A O C=110, m \angle 2=50$. Find $m \angle 1$.

Use the angle addition postulate to write an equation

$$
\begin{aligned}
& m \angle 1+m \angle 2=m \angle A O C \\
& m \angle 1+50=110 \\
& m \angle 1=110-50 \\
& m \angle 1=60
\end{aligned}
$$

Example 2: Given $m \angle A O C=140, m \angle 1=\frac{2}{3} m \angle 2$. Find $m \angle 1$ and $m \angle 2$

Use the angle addition postulate to write an equation.
Let $m \angle 2=x \Rightarrow m \angle 1=\frac{2}{3} x$
$m \angle 1+m \angle 2=m \angle A O C$
$\frac{2}{3} x+x=140$
$\frac{5}{3} x=140$
$x=140 \bullet \frac{3}{5}$
$x=84$
$m \angle 1=\frac{2}{3} x=\frac{2}{3} \bullet 84=56$
$m \angle 2=x=84$

Consider the figure given at the right.
$m \angle A O B=m \angle B O C=30 \Rightarrow \angle A O B \cong \angle B O C$
$\overrightarrow{O C}$ bisects $\angle A O C$

Definition 2: Angle Bisector

The bisector of an angle is the ray with its endpoint at the vertex of the angle, extending into the interior of the angle. The bisector separates the angle into two angles of equal measure

$\overrightarrow{P W}$ is the bisector of $\angle R P Q$

$$
\angle R P W \cong \angle W P Q
$$

$$
m \angle R P W=m \angle W P Q
$$

Postulate Angle Bisector Postulate

Every angle, except a straight angle, has exactly one bisector.

Example 3: Given that $\overrightarrow{O Z}$ bisects $\angle X O Y$, $m \angle X O Z=5 x+4, m \angle Y O Z=7 x-10$. Find $m \angle X O Z$

$m \angle X O Z=m \angle Y O Z \quad$ Definition of angle bisector.
$5 x+4=7 x-10$
$10+4=7 x-5 x$
$14=2 x$
$7=x$
$m \angle X O Z=5 x+4=5 \bullet 7+4=39$

