Adding and Subtracting Polynomials

You have used properties to simplify expressions.
$4 a+3 a-2=(4+3) a-2$

$$
=7 a-2
$$

$$
5 x^{2}+3 y+2 x^{2}-y=5 x^{2}+2 x^{2}+3 y-y
$$

$$
=(5+2) x^{2}+(3-1) y
$$

$$
=7 x^{2}+2 y
$$

Distributive Property
Substitution Property of Equality
$5 x^{2}+3 y+2 x^{2}-y=5 x^{2}+2 x^{2}+3 y-y \quad$ Commutative Property of Addition
Distributive Property
Substitution Property of Equality

Suppose you want to add the polynomials ($3 x+2 y$) and ($8 x+3 y$).
You can use the same properties to find the sums.

Example 1: Add each of the following.

a) $(3 x+2 y)+(8 x+3 y)$

$$
\begin{aligned}
(3 x+2 y)+(8 x+3 y)= & (3 x+8 x)+(2 y+3 y) \\
& =(3+8) x+(2+3) y \\
& =11 x+5 y
\end{aligned}
$$

b) $\left(-3 x^{2}+2 x+7\right)+\left(6 x^{2}-5 x-3\right)$

$$
\begin{aligned}
\left(-3 x^{2}+2 x+7\right)+\left(6 x^{2}-5 x-3\right)=(-3 & \left.x^{2}+6 x^{2}\right)+(2 x-5 x)+[7+(-3)] \\
& =(-3+6) x^{2}+[2+(-5)] x+[7+(-3)] \\
& =3 x^{2}+(-3) x+4 \\
& =3 x^{2}-3 x+4
\end{aligned}
$$

Recall that you can subtract a rational number by adding its additive inverse or opposites.
Similarly, you can subtract a polynomial by adding its additive inverse. To find the additive inverse of a polynomial, replace each term by its additive inverse.

Polynomial	Additive Inverse
$x+2 y$	$-x-2 y$
$2 x^{2}-3 x+5$	$-2 x^{2}+3 x-5$
$-8 x+5 y-7 z$	$8 x-5 y+7 z$
$3 x^{3}-2 x^{2}-5 x$	$-3 x^{3}+2 x^{2}+5 x$

