Absolute Value Inequalities

Let us to a look on the following inequalities $|x| \leq 2$ and $|x| \geq 2$
$|x| \leq 2$ In fact we are looking for all the numbers their absolute value less than or equal to 2 . In other words the numbers at a distance less than or equal to 2 from the origin.

To solve such inequality, you take all numbers less than or equal to 2 and all numbers bigger than or equal to -2 . For
 statement for example $|3| \measuredangle 2,|-3| \Varangle 2$.
$x \leq 2$ and $x \geq-2$

$|x| \geq 2$ In fact we are looking for all the numbers their absolute value greater than or equal to 2 . In other words the numbers at a distance greater than or equal to 2 from the origin.

To solve such inequality, you take all numbers greater than or equal to 2 or all numbers less than or equal to -2 . For example $|4| \geq 2,|-4| \geq 2,|-10| \geq 2$, but if you try any number less than 2or any number greater than -2 , you will get a false statement for example $|1| \npreceq 2,|-1| \nsucceq 2$.
$x \leq-2$ and $x \geq 2$

Example 1: Solve and graph $|2 x-1| \prec 8$
$2 x-1 \succ-8$ and $2 x-1 \prec 8$
$2 x \succ-7$ and $2 x \prec 9$
$x \succ-3.5$ and $x \prec 4.5$
The solution set is all numbers less than -3.5 and greater than 4.5 .

Example 2: Solve and graph $|3 x+2| \geq 5$

$3 x+2 \geq 5$ or $3 x+2 \leq-5$
$3 x \geq 3$ or $3 x \leq-7$
$x \geq 1$ or $x \leq \frac{-7}{3}$
The solution set is all numbers less than or equal $-\frac{7}{3}$ and greater than or equal 1.

