Absolute Value Inequalities

Let us to a look on the following inequalities $|x| \le 2$ and $|x| \ge 2$ |x| < 2

 $|x| \le 2$ In fact we are looking for all the numbers their absolute value less than or equal to 2. In other words the numbers at a distance less than or equal to 2 from the origin.

To solve such inequality, you take all numbers less than or equal to 2 and all numbers bigger than or equal to -2. For example $|1| \le 2, |-1| \le 2, |0| \le 2$, but if you try any number bigger than 2 or any number less than -2, you will get a false statement for example $|3| \le 2, |-3| \le 2$.

 $x \le 2$ and $x \ge -2$

•				
<+++++++		-		
-4 -3 -2 -1				

 $|x| \ge 2$ In fact we are looking for all the numbers their absolute value greater than or equal to 2. In other words the numbers at a distance greater than or equal to 2 from the origin.

To solve such inequality, you take all numbers greater than or equal to 2 or all numbers less than or equal to -2. For example $|4| \ge 2, |-4| \ge 2, |-10| \ge 2$, but if you try any number less than 2 or any number greater than -2, you will get a false statement for example $|1| \ge 2, |-1| \ge 2$.

$$x \le -2$$
 and $x \ge 2$

Example 1: Solve and graph $|2x-1| \prec 8$ $2x-1 \succ -8$ and $2x-1 \prec 8$ $2x \succ -7$ and $2x \prec 9$ $x \succ -3.5$ and $x \prec 4.5$ The solution set is all numbers less than -3.5 and greater than 4.5.

Example 2: Solve and graph $|3x+2| \ge 5$ $3x+2 \ge 5 \text{ or } 3x+2 \le -5$ $3x \ge 3 \text{ or } 3x \le -7$ $x \ge 1 \text{ or } x \le \frac{-7}{3}$ The solution set is all numbers less than or equal $\frac{-7}{3}$ and greater than or equal 1.