Name:

\qquad

Zeros of Polynomial Functions

1) Solve the equation $f(x)=x^{4}-29 x^{2}+100=0$
2) 3) Find all the factors of $p(x)=6 x^{3}-17 x^{2}+11 x-2$
1) Hence find all the solutions to $6 x^{3}-17 x^{2}+11 x-2=0$
2) The function f is defined by $f(x)=x^{3}-7 x-6$
3) Use the factor theorem to show that $(x-3)$ is a factor of $f(x)$
4) Write $\mathrm{f}(\mathrm{x})$ in the form of $f(x)=(x-3)\left(a x^{2}+b x+c\right)$
5) Solve $f(x)=0$
6) Use your solution to $f(x)=0$ to write down the solutions to the equation $f(x+1)=0$
7) Determine graphically the real zeros of the polynomial functions

8) $f(x)=2 x^{5}-16 x^{4}+36 x^{3}-54 x$
9) $f(x)=-\frac{1}{3} x^{4}-\frac{7}{3} x^{3}-\frac{5}{3} x^{2}+\frac{31}{3} x+10$

10) Show that $(x-2)$ is a factor of $x^{3}+2 x^{2}-5 x-6$, and find the other two factors
11) Show that $(x-3)$ is a factor of $2 x^{3}-3 x^{2}-8 x-3$, and find the other two factors
