Vectors and Dot Products

When we multiply two vectors together we do not obtain another vector. Instead, we obtain a scalar. This product is referred to as the **dot product**.

Definition 1: Let $u = \langle u_1, u_2 \rangle = u_1 \mathbf{i} + u_2 \mathbf{j}$ and $v = \langle v_1, v_2 \rangle = v_1 \mathbf{i} + v_2 \mathbf{j}$. The **dot product** of **u** and **v**, denoted $u \bullet v$, is defined as:

 $u \bullet v = u_1 v_1 + u_2 v_2$

Example 1: Find each dot product.

a. $\langle 4,5 \rangle \Box \langle 2,3 \rangle$ $\langle 4,5 \rangle \Box \langle 2,3 \rangle = 4(2) + 5(3)$

$$=8+15$$

= 23

- b. $\langle 2, -1 \rangle \Box \langle 1, 2 \rangle$ $\langle 2, -1 \rangle \Box \langle 1, 2 \rangle = 2(1) + (-1)(2) = 2 - 2 = 0$
- c. $\langle 0,3\rangle\langle 4,-2\rangle$

$$\langle 0,3\rangle \Box \langle 4,-2\rangle = 0(4) + 3(-2) = 0 - 6 = -6$$

Properties: <u>Properties of the Dot Product</u>: If **u**, **v**, and **w** are vectors and *m* is a real number then:

- 1) $u \bullet u = ||u||^2$
- 2) $u \bullet v = v \bullet u$
- 3) $u \bullet (v+w) = u \bullet v + u \bullet w$
- 4) $(mu) \bullet v = m(u \bullet v) = u \bullet (mv)$
- 5) $0 \bullet u = 0$

The angle between two nonzero vectors is the angle θ , $0 \le \theta \le \pi$ between their respective standard position vectors, this angle can be found using the dot product.

Mathelpers.com

Mathelpers

Theorem 1: <u>Alternative form of dot product</u>: If θ is the angle between two nonzero vectors **a** and **b**, then $\mathbf{a} \bullet \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$.

Theorem 2: <u>Cosine of the Angle Between Vectors</u>: If θ is the angle between two nonzero vectors **a** and **b**, then $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$

Theorem 3: <u>Orthogonal Vectors</u>: Two vectors **u** and **v** are orthogonal if and only if $u \bullet v = 0$.

Definition 2: <u>Parallel and Orthogonal Vectors</u>: Let θ be the angle between two nonzero vectors **u** and v. Then, by definition:

- 1) **u** and **v** are **parallel** if $\theta = 0$ or $\theta = \pi$ ($\cos \theta = \pm 1$)
- 2) **u** and **v** are **orthogonal** if $\theta = \frac{\pi}{2}$. $(\cos \theta = 0)$