Vectors and Dot Products

When we multiply two vectors together we do not obtain another vector. Instead, we obtain a scalar. This product is referred to as the dot product.

Definition 1: Let $u=\left\langle u_{1}, u_{2}\right\rangle=u_{1} \mathbf{i}+u_{2} \mathrm{j}$ and $v=\left\langle v_{1}, v_{2}\right\rangle=v_{1} \mathbf{i}+v_{2} \mathrm{j}$. The dot product of \mathbf{u} and \mathbf{v}, denoted $u \bullet v$, is defined as:

$$
u \bullet v=u_{1} v_{1}+u_{2} v_{2}
$$

Example 1: Find each dot product.
a. $\langle 4,5\rangle \llbracket(2,3\rangle$

$$
\begin{aligned}
\langle 4,5\rangle\ulcorner(2,3\rangle & =4(2)+5(3) \\
& =8+15 \\
& =23
\end{aligned}
$$

b. $\langle 2,-1\rangle \measuredangle(1,2\rangle$

$$
\langle 2,-1\rangle \check{(1,2\rangle}=2(1)+(-1)(2)=2-2=0
$$

c. $\langle 0,3\rangle\langle 4,-2\rangle$
$\langle 0,3\rangle\lceil\langle 4,-2\rangle=0(4)+3(-2)=0-6=-6$

Properties: Properties of the Dot Product: If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors and m is a real number then:

1) $u \bullet u=\|u\|^{2}$
2) $u \bullet v=v \bullet u$
3) $u \bullet(v+w)=u \bullet v+u \bullet w$
4) $(m u) \bullet v=m(u \bullet v)=u \bullet(m v)$
5) $0 \bullet u=0$

The angle between two nonzero vectors is the angle $\theta, 0 \leq \theta \leq \pi$ between their respective standard position vectors, this angle can be found using the dot product.

Mathelpers

Theorem 1: Alternative form of dot product: If θ is the angle between two nonzero vectors \mathbf{a} and \mathbf{b}, then $\mathrm{a} \bullet \mathrm{b}=\|\mathrm{a}\|\|\mathrm{b}\| \cos \theta$.

Theorem 2: Cosine of the Angle Between Vectors: If θ is the angle between two nonzero vectors a and \mathbf{b}, then $\cos \theta=\frac{\mathrm{a} \bullet \mathrm{b}}{\|\mathrm{a}\|\|\mathrm{b}\|}$

Theorem 3: Orthogonal Vectors: Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $u \bullet v=0$.
Definition 2: Parallel and Orthogonal Vectors: Let θ be the angle between two nonzero vectors \mathbf{u} and v . Then, by definition:

1) \mathbf{u} and \mathbf{v} are parallel if $\theta=0$ or $\theta=\pi \quad(\cos \theta= \pm 1)$
2) \mathbf{u} and \mathbf{v} are orthogonal if $\theta=\frac{\pi}{2} . \quad(\cos \theta=0)$
