Unit Vector and Direction Angles

Unit Vectors:

Definition 1: A unit vector has length (or magnitude) 1. Unit vectors are often denoted by u. Given a vector v, the unit vector in the direction of v is given by:

$$u = \frac{1}{\|v\|} v \quad (\mathbf{v} \neq \mathbf{0})$$

Note that u is a scalar multiple of v. The vector u has a magnitude of 1 and the same direction as v. The vector u is called a unit vector in the direction of v.

Example 1: Find the unit vector in the direction of $\mathbf{v} = (3, -4)$.

$$||v|| = \sqrt{3^2 + (-4)^2} = 5$$

The unit vector in the direction of v is u:

$$u = \frac{1}{5} \langle 3, -4 \rangle = \left\langle \frac{3}{5}, \frac{-4}{5} \right\rangle$$

Standard Unit Vectors: $i = \langle 1, 0 \rangle$ and $j = \langle 0, 1 \rangle$

Definition 2: For $\mathbf{a} = \langle a_1, a_2 \rangle$, it could be written using unit vectors as $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j}$. This form is called a **linear combination** of the unit vectors \mathbf{i} and \mathbf{j} . For example $v = \langle -5, 12 \rangle$ can be written as $v = -5\mathbf{i} + 12\mathbf{j}$

Remarks:

- 1) If ||v|| = 1, v is a unit vector. (A vector of magnitude one is called a **unit vector**). There are two special unit vectors used in the xy-plane: $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$.
- 2) If $||v|| = 0 \Leftrightarrow v$ is a zero vector. (A vector of magnitude zero is called the **zero vector**. By definition, the zero vector is $\mathbf{0} = \langle 0, 0 \rangle$).

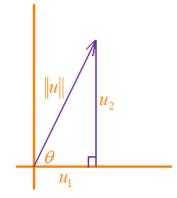
Formulas for Horizontal and Vertical Components of a Vector u

Definition 3: Let θ be an angle in standard position, measured from the positive *x*-axis to the vector $u = \langle u_1, u_2 \rangle = u_1 \mathbf{i} + u_2 \mathbf{j}$. Then the horizontal and vertical components, u_1 and u_2 respectively, can be found as follows.

$$u_1 = \|\mathbf{u}\| \cos \theta \Rightarrow \cos \theta = \frac{u_1}{\|\mathbf{u}\|}$$

$$u_2 = \|\mathbf{u}\| \sin \theta \Rightarrow \sin \theta = \frac{u_2}{\|\mathbf{u}\|}$$

$$u = \langle \|u\| \cos \theta, \|u\| \sin \theta \rangle$$



Definition 4: If u is the unit vector such that θ is the angle (measured counterclockwise)from the positive x-axis to u, the terminal point of u lies on the unit circle and you have $u = \langle x, y \rangle = \langle \cos \theta, \sin \theta \rangle = (\cos \theta)i + (\sin \theta)j$

The angle θ is called the direction angle of the vector u.

Suppose that u is a unit vector with direction angle θ . If v=ai+bj is any vector that makes an angle θ with the positive x-axis and it has the same direction as u, you can write:

$$v = ||v|| \langle \cos \theta, \sin \theta \rangle$$

$$v = ||v|| (\cos \theta) i + ||v|| (\sin \theta) j$$

Because $v = ai + bj = ||v|| (\cos \theta)i + ||v|| (\sin \theta)j$, it follows that the direction angle θ for v is determined by:

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\|v\| \sin \theta}{\|v\| \cos \theta} = \frac{b}{a}$$