Unit Vector and Direction Angles

Unit Vectors:

Definition 1: A unit vector has length (or magnitude) 1. Unit vectors are often denoted by u.
Given a vector v, the unit vector in the direction of v is given by:

$$
u=\frac{1}{\|v\|} v(\mathbf{v} \neq \mathbf{0})
$$

Note that u is a scalar multiple of v. The vector u has a magnitude of 1 and the same direction as v. The vector u is called a unit vector in the direction of v.

Example 1: Find the unit vector in the direction of $\mathbf{v}=\langle 3,-4\rangle$.
$\|v\|=\sqrt{3^{2}+(-4)^{2}}=5$

The unit vector in the direction of v is u :
$u=\frac{1}{5}\langle 3,-4\rangle=\left\langle\frac{3}{5}, \frac{-4}{5}\right\rangle$

Standard Unit Vectors: $i=\langle 1,0\rangle$ and $j=\langle 0,1\rangle$
Definition 2: For $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$, it could be written using unit vectors as $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}$. This form is called a linear combination of the unit vectors \mathbf{i} and \mathbf{j}.
For example $v=\langle-5,12\rangle$ can be written as $v=-5 \mathrm{i}+12 \mathrm{j}$

Remarks:

1) If $\|v\|=1, v$ is a unit vector. (A vector of magnitude one is called a unit vector). There are two special unit vectors used in the $x y$-plane: $\mathbf{i}=\langle 1,0\rangle$ and $\mathbf{j}=\langle 0,1\rangle$.
2) If $\|v\|=0 \Leftrightarrow v$ is a zero vector. (A vector of magnitude zero is called the zero vector. By definition, the zero vector is $\mathbf{0}=\langle 0,0\rangle)$.

Formulas for Horizontal and Vertical Components of a Vector u

Definition 3: Let θ be an angle in standard position, measured from the positive x-axis to the vector $u=\left\langle u_{1}, u_{2}\right\rangle=u_{1} \mathrm{i}+u_{2} \mathrm{j}$. Then the horizontal and vertical components, u_{1} and u_{2} respectively, can be found as follows.

$$
\begin{aligned}
& u_{1}=\|\mathrm{u}\| \cos \theta \Rightarrow \cos \theta=\frac{u_{1}}{\|\mathrm{u}\|} \\
& u_{2}=\|\mathrm{u}\| \sin \theta \Rightarrow \sin \theta=\frac{u_{2}}{\|\mathrm{u}\|} \\
& u=\langle\|u\| \cos \theta,\|u\| \sin \theta\rangle
\end{aligned}
$$

Definition 4: If u is the unit vector such that θ is the angle (measured counterclockwise)from the positive x -axis to u , the terminal point of u lies on the unit circle and you have
$u=\langle x, y\rangle=\langle\cos \theta, \sin \theta\rangle=(\cos \theta) i+(\sin \theta) j$
The angle θ is called the direction angle of the vector u.

Suppose that u is a unit vector with direction angle θ. If $v=a i+b j$ is any vector that makes an angle θ with the positive x -axis and it has the same direction as u , you can write:
$v=\|\nu\|\langle\cos \theta, \sin \theta\rangle$
$v=\|v\|(\cos \theta) i+\|v\|(\sin \theta) j$
Because $v=a i+b j=\|v\|(\cos \theta) i+\|v\|(\sin \theta) j$, it follows that the direction angle θ for v is determined by:
$\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\|v\| \sin \theta}{\|v\| \cos \theta}=\frac{b}{a}$

