Trigonometric Integrals

Strategy for Trigonometric Integrals

For $\int \sin^m x \cos^n x dx$ $(m, n \ge 0)$

<u>Case 1:</u> If *m* (the power of sine) is <u>even</u> and *n* (the power of cosine) is <u>odd</u>:

Let $u = \sin x$, save one factor of $\cos x$ for du, and use $\cos^2 x = 1 - \sin^2 x$ to express the remaining factors in terms of sine.

Example 1: Find
$$\int \sin^4 x \cos^3 x dx$$

Let, $u = \sin x$ and $du = \cos x dx$
 $\int \sin^4 x \cos^3 x dx$
 $= \int \sin^4 x \cos^2 x \cos x dx$
 $= \int u^4 (1 - u^2) du$
 $= \frac{u^5}{5} - \frac{u^7}{7}$
 $= \frac{\sin^5 x}{5} - \frac{\sin^7 x}{7} + C$

<u>**Case 2:**</u> If *m* (the power of sine) is <u>odd</u> and *n* (the power of cosine) is <u>even</u>: Let $u = \cos x$, save one factor of $\sin x$ for du, and use $\sin^2 x = 1 - \cos^2 x$ to express the remaining factors in terms of cosine.

Example 2: Find $\int \sin^5 x \cos^2 x dx$ Let, $u = \cos x$ and $du = -\sin x dx$

$$\int \sin^{4} x \cos^{2} x dx$$

= $\int \sin^{4} x \cos^{2} x \sin x dx$
= $\int (1 - \cos^{2} x)^{2} \cos^{2} x \sin x dx$
= $\int -(1 - u^{2})^{2} u^{2} du$
= $\int -(u^{2} - 2u^{3} + u^{6}) du$
= $-\frac{u^{3}}{3} + 2\frac{u^{4}}{4} - \frac{u^{7}}{7}$
= $-\frac{\cos^{3} x}{3} + 2\frac{\cos^{4} x}{4} - \frac{\cos^{7} x}{7} + C$

Mathelpers.com

<u>Case 3:</u> If m (the power of sine) is <u>odd</u> and n (the power of cosine) is <u>odd</u>: Use either one of the above two methods.

<u>**Case4:**</u> If *m* (the power of sine) is <u>even</u> and *n* (the power of cosine) is <u>even</u>: You have to use the identities: $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$ and $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$

Note:

1. If either or both powers of sine and cosine are odd, you may need to use one of the following identities: $\cos^2 x = 1 - \sin^2 x$ and $\sin^2 x = 1 - \cos^2 x$ (both of these are from $\cos^2 x + \sin^2 x = 1$).

2. If both powers of sine and cosine are even, you must use the identities: $\sin^2 x = \frac{1}{2}(1-\cos 2x)$

and $\cos^2 x = \frac{1}{2} (1 + \cos 2x)$

3. Always keep in mind the identities: $(a + b)(a - b) = a^2 - b^2$ $(a + b)^2 = a^2 + 2ab + b^2$ $(a - b)^2 = a^2 - 2ab + b^2$

For $\int \tan^m x \sec^n x \, dx$ (*m*, *n* \ge 0)

Case 1: If *n* (the power of secant) is even:

Let $u = \tan x$, save one factor of $\sec^2 x$ for du and use $\sec^2 x = 1 + \tan^2 x$ to express the remaining factor of secant in terms of tangent.

Case 2: If *m* (the power of tangent) is odd:

Let $u = \sec x$, save one factor of $\tan x \sec x$ for du and use $\sec^2 x - 1 = \tan^2 x$ to express the remaining factor of tangent in terms of secant.

Summary:

Power of tangent	Power of secant	How to solve it?
Odd	Odd	Use case 2
Odd	Even	Use case 1 or 2
Even	Odd	Integration by Parts
Even	Even	Use case 1