Trigonometric Integrals

Strategy for Trigonometric Integrals

$$
\text { For } \int \sin ^{m} x \cos ^{n} x d x \quad(m, n \geq 0)
$$

Case 1: If \boldsymbol{m} (the power of sine) is even and \boldsymbol{n} (the power of cosine) is odd:
Let $u=\sin x$, save one factor of $\cos x$ for $d u$, and use $\cos ^{2} x=1-\sin ^{2} x$ to express the remaining factors in terms of sine.

Example 1: Find $\int \sin ^{4} x \cos ^{3} x d x$
Let, $u=\sin x$ and $d u=\cos x d x$
$\int \sin ^{4} x \cos ^{3} x d x$
$=\int \sin ^{4} x \cos ^{2} x \cos x d x$
$=\int \sin ^{4} x\left(1-\sin ^{2} x\right) \cos x d x$
$=\int u^{4}\left(1-u^{2}\right) d u$
$=\frac{u^{5}}{5}-\frac{u^{7}}{7}$
$=\frac{\sin ^{5} x}{5}-\frac{\sin ^{7} x}{7}+C$

Case 2: If \boldsymbol{m} (the power of sine) is odd and \boldsymbol{n} (the power of cosine) is even:
Let $u=\cos x$, save one factor of $\sin x$ for $d u$, and use $\sin ^{2} x=1-\cos ^{2} x$ to express the remaining factors in terms of cosine.

Example 2: Find $\int \sin ^{5} x \cos ^{2} x d x$
Let, $u=\cos x$ and $d u=-\sin x d x$
$\int \sin ^{5} x \cos ^{2} x d x$
$=\int \sin ^{4} x \cos ^{2} x \sin x d x$
$=\int\left(1-\cos ^{2} x\right)^{2} \cos ^{2} x \sin x d x$
$=\int-\left(1-u^{2}\right)^{2} u^{2} d u$
$=\int-\left(u^{2}-2 u^{3}+u^{6}\right) d u$
$=-\frac{u^{3}}{3}+2 \frac{u^{4}}{4}-\frac{u^{7}}{7}$
$=-\frac{\cos ^{3} x}{3}+2 \frac{\cos ^{4} x}{4}-\frac{\cos ^{7} x}{7}+C$

Mathelpers

Case 3: If \boldsymbol{m} (the power of sine) is odd and \boldsymbol{n} (the power of cosine) is odd:
Use either one of the above two methods.

Case4: If \boldsymbol{m} (the power of sine) is even and \boldsymbol{n} (the power of cosine) is even:
You have to use the identities: $\sin ^{2} x=1 / 2(1-\cos 2 x)$ and $\cos ^{2} x=1 / 2(1+\cos 2 x)$

Note:

1. If either or both powers of sine and cosine are odd, you may need to use one of the following identities: $\cos ^{2} x=1-\sin ^{2} x$ and $\sin ^{2} x=1-\cos ^{2} x$ (both of these are from $\cos ^{2} x+\sin ^{2} x=1$).
2. If both powers of sine and cosine are even, you must use the identities: $\sin ^{2} x=1 / 2(1-\cos 2 x)$ and $\cos ^{2} x=1 / 2(1+\cos 2 x)$
3. Always keep in mind the identities:
$(a+b)(a-b)=a^{2}-b^{2}$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$

$$
\text { For } \int \tan ^{m} x \sec ^{n} x d x(m, n \geq 0)
$$

Case 1: If \boldsymbol{n} (the power of secant) is even:
Let $u=\tan x$, save one factor of $\sec ^{2} x$ for $d u$ and use $\sec ^{2} x=1+\tan ^{2} x$ to express the remaining factor of secant in terms of tangent.

Case 2: If m (the power of tangent) is odd:
Let $u=\sec x$, save one factor of $\tan x \sec x$ for $d u$ and use $\sec ^{2} x-1=\tan ^{2} x$ to express the remaining factor of tangent in terms of secant.

Summary:

Power of tangent	Power of secant	How to solve it?
Odd	Odd	Use case 2
Odd	Even	Use case 1 or 2
Even	Odd	Integration by Parts
Even	Even	Use case 1

