## Triangles and Angles

Activity 1: If you measure and add the angles in any triangle, you will find that the sum of the angles have a special relationship. Cut and fold a triangle as shown below. Make a conjecture about the sum of the angle measures of a triangle.


The results of the activity above can be stated in the Angle Sum Theorem.

## Theorem 1: Angle Sum Theorem

The sum of the measures of the angles of a triangle is $180^{\circ}$.


$$
a^{0}+b^{0}+c^{0}=180^{0}
$$

You can use the Angle Sum Theorem to find missing measures in triangles.

## Example 1: Find $m \angle T S R$ in $\cup R S T$.

$$
\begin{array}{ll}
m \angle R+m \angle T+m \angle S=180^{\circ} & \text { Angle Sum Theorem } \\
\Rightarrow 48^{\circ}+65^{\circ}+m \angle S=180^{\circ} & \text { Substitution } \\
\Rightarrow 113^{0}+m \angle S=180^{\circ} & \text { Add } \\
\Rightarrow m \angle S=180^{\circ}-113^{0} & \text { Subtract } \\
\Rightarrow m \angle S=67^{\circ} &
\end{array}
$$



You can use the Angle Sum Theorem to discover a relationship between the acute angles of a right triangle.

$$
\begin{array}{ll}
m \angle A+m \angle B+m \angle C=180^{\circ} & \text { Angle Sum Theorem } \\
\Rightarrow 35^{\circ}+90^{\circ}+m \angle S=180^{\circ} & \text { Substitution } \\
\Rightarrow 125^{\circ}+m \angle S=180^{\circ} & \text { Add } \\
\Rightarrow m \angle S=180^{\circ}-125^{\circ} & \text { Subtract } \\
\Rightarrow m \angle S=55^{\circ} &
\end{array}
$$

By the definition of complementary angles, $\angle \mathrm{A}$ and $\angle \mathrm{C}$ are complementary. This relationship is stated in the following theorem.

Theorem 2: The acute angles of a right triangle are complementary.

$$
a^{0}+b^{0}=90^{0}
$$



An equiangular triangle is a triangle in which all three angles are congruent. You can use the Angle Sum Theorem to find the measure of each angle in an equiangular triangle.
Triangle $P Q R$ is an equiangular triangle. Since $m \angle P+m \angle Q+m \angle R=180^{\circ}$, the measure of each angle of $P Q R$ is $180^{\circ} \div 3$ or $60^{\circ}$.


Theorem 3: The measure of each angle of an equiangular triangle is 60 .


