## The Pythagorean Theorem

The relationship among 9, 16, and 25 forms the basis for the Pythagorean Theorem. It can be illustrated geometrically.


The sides of the right triangle have lengths of 3,4 , and 5 units. The area of the larger square is equal to the total area of the two smaller squares.
$5^{2}=3^{2}+4^{2}$
$25=9+16$
This relationship is true for any right triangle.

Theorem 1: Pythagorean Theorem: In a right triangle, the square of the length of the hypotenuse $c$ is equal to the sum of the squares of the lengths of the legs $a$ and $b$.


If two measures of the sides of a right triangle are known, the Pythagorean Theorem can be used to find the measure of the third side.

Example 1: Find the length of one leg of a right triangle if the length of the hypotenuse is 15 meters and the length of the other leg is 7 meters.
Hypotenuse is 15 meters $\Rightarrow \mathrm{c}=15$
Leg is 7 meters $\Rightarrow b=7$
Using the Pythagorean Theorem: $c^{2}=a^{2}+b^{2}$
$\Rightarrow 15^{2}=a^{2}+7^{2}$
$\Rightarrow 225=a^{2}+49$
$\Rightarrow a^{2}=225-49$
$\Rightarrow a^{2}=225-49=176$
$\Rightarrow a=\sqrt{176} \approx 13.3$
The converse of the Pythagorean Theorem is also true.

Theorem 2: Converse of the Pythagorean Theorem: If $c$ is the measure of the longest side of a triangle, $a$ and $b$ are the lengths of the other two sides, and $c^{2}=a^{2}+b^{2}$, then the triangle is a right triangle.

Theorem 3: If a triangle has sides of lengths $a, b$, and $c$ where $c$ is the longest length and $c^{2}=a^{2}+$ $b^{2}$, then the triangle is a right triangle with $c$ its hypotenuse.

Theorem 4: If $a, b$, and $c$ represent the lengths of the sides of a triangle, and $c$ is the longest length, then the triangle is obtuse if $c^{2}>a^{2}+b^{2}$, and the triangle is acute if $c^{2}<a^{2}+b^{2}$.

$c^{2}=a^{2}+b^{2}$
$\Rightarrow$ Right Triangle

a

$$
\begin{aligned}
& c^{2}<a^{2}+b^{2} \\
& \Rightarrow \text { Acute Triangle }
\end{aligned}
$$


$c^{2}>a^{2}+b^{2}$
$\Rightarrow$ Obtuse Triangle

