The Pythagorean Theorem and Its Converse

The sides of the right triangle below have lengths of 3,4 , and 5 units.
The relationship among these lengths forms the basis for one of the most famous theorems in mathematics.

The two sides that form the right angle are called the legs. In the triangle above, the lengths of the legs are 3 units and 4 units. The side opposite the right angle is called the hypotenuse. The hypotenuse of this triangle has a length of 5 units.

The squares drawn along each side of the triangle illustrate the Pythagorean Theorem geometrically. Study the areas of the squares. Do you notice a relationship between them? The area of the larger square is equal to the total area of the two smaller squares.

$$
\begin{aligned}
& 25=16+9 \\
& 5^{2}=4^{2}+3^{2}
\end{aligned}
$$

This relationship is true for any right triangle and is called the Pythagorean Theorem.

Pythagorean Theorem: In a right triangle, the square of the length of the hypotenuse, c, is equal to the sum of the squares of the lengths of the legs, a and b.

Converse of the Pythagorean Theorem: If c is the measure of the longest side of a triangle and $c^{2}=a^{2}+b^{2}$, then the triangle is a right triangle.

