Mathelpers

The Derivative

Consider the function $y=x^{2}$ between $x=-3$ and $x=3$
At the point $A(-3,9)$ the value of y is seen to be decreasing rapidly as x increases. A tangent is a line which touches, but does not cross a curve. The gradient of a curve at any point P is defined as the slope of the tangent at P.

At A the graph has a large negative gradient. At the points $B(-2,4)$ and $C(-1,1)$ the gradient is still negative but is becoming less steep as we move from A through B to C. At the point $\mathrm{D}(0,0)$ the gradient is zero. Then at point $\mathrm{E}(1,1)$ there is a small positive gradient and this becomes larger as we move through $F(2,4)$ to $G(3,9)$.

Differentiation is the name given to the process by which an expression for the gradient of a function is obtained from the original function.

Definition 1: Derivative of a function: Let $y=f(x)$ be a function. The derivative of f at x, denoted by $f^{\prime}(x)$, is defined to be
$f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$
provided the limit exists. For all x for which this is a function of x

limit exists, f^{\prime}

The derivative of the function of x is also a function of x.
The process of finding the derivative of a function is called differentiation. A function is differentiable at x if its derivative exists at x and is differentiable on an open interval (a, b) if it is differentiable at every point in the interval.

In addition to $f^{\prime}(x)$, which is read as " f prime of x ", other notations are used to denote the derivative of $y=f(x)$ with respect to x. The most common are: $y^{\prime}, \frac{d y}{d x}$ and $\frac{d}{d x} f(x)$. $f^{\prime}(a)=\left.\frac{d y}{d x}\right|_{x=a}$

Geometric Interpretation of the Derivative

f^{\prime} is the function whose value at x is the slope of the tangent line to the graph of f at x.

Definition 2: If f is defined on an open interval containing c , and if the limit $m=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}$
Exist, then the line passing through $(c, f(c))$ with slope m is the tangent line to the graph of f at the point $(c, f(c))$.
The slope of the tangent line to the graph of f at the point $(c, f(c))$ is also called the slope of the graph of f at $x=c$

Rate of Change Interpretation of the Derivative

If $y=f(x)$, then f^{\prime} is the function whose value at x is the instantaneous rate of change of y at the point x.

Example 1: Use the definition of derivative to find the derivative of $f(x)=2 x$.
$f(x+h)=2(x+h)$
$\frac{f(x+h)-f(x)}{h}=\frac{2(x+h)-2 x}{h}=\frac{2 h}{h}$
$\frac{f(x+h)-f(x)}{h}=2$
Since we end up here with a constant, taking the limit as $h \rightarrow 0$ won't make any difference:
$\frac{d}{d x} f(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)=2$.

Theorem 1: If f is differentiable at $\mathrm{x}=\mathrm{c}$, then f is continuous at $\mathrm{x}=\mathrm{c}$
Differentiability \Rightarrow Continuity

