Sum - to - Product Formulas

There are also formulas that combine a sum or difference into a product. The sum-to-product formulas are also used to prove the Law of Tangents, though that itself is no longer used in solving triangle.

Here's how to get the sum-to-product formulas. First make these definitions:

$$
A=\frac{1}{2}(u+v), \text { and } B=\frac{1}{2}(u-v)
$$

Then you can see that
$A+B=u$, and $A-B=v$
Now make those substitutions in all four formulas of product to sum, and after simplifying you will have the sum-to-product formulas:

Rule 1: Factorization (Sums or Differences into Products)

1) $\sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
2) $\sin \alpha-\sin \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$
3) $\cos \alpha+\cos \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
4) $\cos \alpha-\cos \beta=-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$

OR
$\cos \alpha-\cos \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\beta-\alpha}{2}\right)$
Example 1: Verify that $\sin 70^{\circ}+\cos 40^{\circ}=\sqrt{3} \sin 80^{\circ}$
$\sin 70^{\circ}=\sin \left(90^{\circ}-20^{\circ}\right)=\cos 20^{\circ}\left[\right.$ Since $\left.\sin \left(90^{\circ}-\theta\right)=\cos \theta\right]$
$\Rightarrow \sin 70^{\circ}+\cos 40^{\circ}$
$=\cos 20^{\circ}+\cos 40^{\circ}$
$=2 \cos \left(\frac{40^{\circ}+20^{\circ}}{2}\right) \cos \left(\frac{40^{\circ}-20^{\circ}}{2}\right)$
$=2 \cos 30^{\circ} \cos 10^{\circ}$
$=2 \cdot\left(\frac{\sqrt{3}}{2}\right) \cos 10^{\circ}$
$=\sqrt{3} \cos 10^{\circ}$
But $\sin \left(90^{\circ}-\theta\right)=\cos \theta \Rightarrow \cos 10^{\circ}=\sin \left(90^{\circ}-10^{\circ}\right)=\sin 80^{\circ}$
$\therefore \sqrt{3} \sin 80^{\circ}$

