Name:

Sum - to - Product Formulas

1) Use the sum - to - product formulas to write the sum or difference as a product

$$\sin\frac{5\pi}{4} - \sin\frac{3\pi}{4}$$

$$2) \qquad \sin\left(x + \frac{\pi}{2}\right) + \sin\left(x - \frac{\pi}{2}\right)$$

3)
$$\sin x + \sin 5x$$

$$4) \qquad \cos(x+2\pi)-\cos x$$

5)
$$\sin 3\theta + \sin \theta$$

6)
$$\cos 120^{\circ} + \cos 30^{\circ}$$

$$7) \qquad \cos\frac{3\pi}{4} - \cos\frac{\pi}{4}$$

8)
$$\cos 6x + \cos 2x$$

9)
$$\sin 5\theta - \sin 3\theta$$

10)
$$\sin(\alpha+\beta)-\sin(\alpha-\beta)$$

11)
$$\cos\left(\theta + \frac{\pi}{2}\right) - \cos\left(\theta - \frac{\pi}{2}\right)$$

2) Write $\sin 2\theta - \sin 4\theta$ as a product of two functions

3) Find the value of $\cos \frac{\pi}{12} + \cos \frac{5\pi}{4}$ by using a Sum-to-Product Formula.

4) Verify the identity $\frac{\sin 3x + \sin 7x}{\cos 3x - \cos 7x} = \cot 2x$

5) Prove the trigonometric identities:

1)
$$\tan\left(\frac{x+y}{2}\right)\tan\left(\frac{x-y}{2}\right) = \frac{\cos y - \cos x}{\cos x + \cos y}$$

2)
$$\frac{\sin 7x + \sin 3x}{\cos 7x + \cos 3x} = \tan 5x$$

6) Solve the equation $\cos 5x + \cos x = 2\cos 2x$

7) Solve the equation $\sin x = \sin 5x$