Name:

Sum and Difference Formulas

- Find the exact value of the trigonometric function given that $\sin u = \frac{3}{4}$ and $\cos v = -\frac{5}{13}$ (both u and v are in Quadrant II.)
 - 1) sin(u + v)
 - 2) tan(u + v)
 - 3) cos(u v)
 - 4) sin(u v)
 - 5) cos(u + v)
 - 6) tan(u v)
- Suppose that A and B are angles in standard position, with $\sin A = \frac{4}{5}$, $\frac{\pi}{2} < A < \pi$, and $\cos B = -\frac{5}{13}$, $\pi < B < \frac{3\pi}{2}$. Find each of the following:
 - $1)\sin(A+B)$
 - 2) $\tan(A+B)$
 - 3)the quadrant of A + B
- 3) Use the given information to find $\cos(s+t)$, $\sin(s-t)$ and $\tan(s+t)$ then determine in which quadrant is s+t
 - 1) $\cos s = \frac{3}{5}$ and $\sin t = \frac{5}{13}$, s and t in quadrant I
 - 2) $\cos s = -\frac{1}{5}$ and $\sin t = \frac{3}{5}$, s and t in quadrant II
 - 3) $\sin s = \frac{2}{3}$ and $\sin t = -\frac{1}{3}$, s in quadrant II and t in quadrant IV
 - 4) $\sin s = \frac{3}{5}$ and $\sin t = -\frac{12}{13}$, s in quadrant I and t in quadrant III
 - 5) $\cos s = \frac{-8}{17}$ and $\cos t = \frac{-3}{5}$, s and t in quadrant III
 - 6) $\cos s = -\frac{15}{17}$ and $\sin t = \frac{4}{5}$, s in quadrant II and t in quadrant I