Name: _____

Solving Trigonometric Equations

1) Solve each equation for exact solutions over the interval $[0,2\pi)$

$$1) \qquad \cos 2x = \frac{\sqrt{3}}{2}$$

$$2) \qquad \cos 2x = -\frac{1}{2}$$

$$\sin 3x = 0$$

4)
$$\sin 3x = -1$$

5)
$$\sin^2 \frac{3x}{2} - 2 = 0$$

$$\cot 3x = \sqrt{3}$$

7)
$$3 \tan 3x = \sqrt{3}$$

$$8) \qquad \sqrt{2}\cos 2x = -1$$

$$9) \qquad \sin\frac{x}{2} = \sqrt{2} - \sin\frac{x}{2}$$

10)
$$2\sqrt{3}\sin 2x = \sqrt{3}$$

$$11) \qquad \sin x = \sin 2x$$

12)
$$\tan 4x = 0$$

13)
$$\sin \frac{x}{2} = \cos \frac{x}{2}$$

$$14) \qquad \sec\frac{x}{2} = \cos\frac{x}{2}$$

$$15) \qquad \cos 2x - \cos x = 0$$

2) Solve the equation $2 \cos^2 x + 3 \cos x + 1 = 0$

- 1) For the principal values, (giving your answers in degrees)
- 2) For all angles between 0° and 360°
- 3) For all possible angles, that is, the general solution
- 3) Solve the equation $\cos^2 x + 2 \sin x = 1$
 - 1) For the principal values (giving your answers in radians)
 - 2) For all angles from 0 to 2π
 - 3) For all possible angles, that is, the general solution $\ \ \,$

4) Solve, if possible, the following equations

- 1) $3 \cos t 2 \sin t = 4$,
- 2) $3 \cos t 2 \sin t = \sqrt{13}$,
- 3) $3 \cos t 2 \sin t = 1 \text{ for } 0 \le t \le 2\pi$
- 4) $3 \sin 2t + \cos 2t = 2$
- 5) Show that the equation $_{15\sin^2\theta=13+\cos\theta}$ may be written as a quadratic equation in $\cos\theta$. Hence solve the equation for θ in the range [0,360]