Name:

\qquad

Solving Trigonometric Equations

Exercise 1: Use the quadratic Formula to solve the equation in the interval $(0,2 \pi)$. Then use a graphing utility to approximate the angle x.

1) $\begin{aligned} & 12 \sin ^{2} x-13 \sin x+3= \\ & 0\end{aligned}$
2) $3 \tan ^{2} x+4 \tan x-4=0$
3) $\tan ^{2} \mathrm{x}+3 \tan \mathrm{x}+1=0$
4) $4 \cos ^{2} \mathrm{x}-4 \cos \mathrm{x}-1=0$

Exercise 2: Use inverse function where needed to find all solutions of the equation in the interval ($0,2 \pi$).

$$
\begin{array}{ll}
\text { 1) } \tan ^{2} x-6 \tan x+5=0 & \text { 2) } \sec ^{2} x+\tan x-3=0 \\
\text { 3) } 2 \cos ^{2} x-5 \cos x+2=0 & \text { 4) } 2 \sin ^{2} x-7 \sin x+3=0
\end{array}
$$

Exercise 3: The monthly sales S (in thousands of units) of a seasonal product are approximated by.

$$
S=74.50+43.75 \sin \frac{\pi t}{6}
$$

Where t is the time (in months), with $t=1$ corresponding to January. Determine the months when sales exceed 1000,000 units.

Exercise 4: The monthly sales S (in hundreds of units) of skiing equipment at a sports store are approximated by

$$
S=58.3+32.5 \cos \frac{\pi t}{6}
$$

Where is the time (in months), with $t=1$ corresponding to January. Determine the months when sales exceed 7500 units.

