Solving Linear Systems by Linear Combinations

Use elimination when the coefficients of one of the variables are equal or additive inverses. For example, consider the system below.
$5 x+11 y=12 \quad 2 x+11 y=36$
Notice that the coefficient of y in both equations is the same. You can solve this system of equations in three steps.

Step 1: Subtract the two equations, so that y is eliminated. The result is an equation only in $x: 3 x=$ -24.
Step 2: The next step is to solve for x : $x=-8$.
Step 3: Substitute the value of x in any one of the two original equations and solve for y : $y=\frac{52}{11}$
Rule 1: The solution of a system can be found by using an algebraic method called the Elimination Method. To find the set of solutions using the substitution method, we follow the steps listed below:

Step 1: Simplify and put both equations in the form $A x+B y=C$ if needed.
Step 2: Multiply one or both equations by a number that will create opposite coefficients for either x or y if needed.
Step 3: Add equations.
Step 4: Solve for remaining variable.
Step 5: Solve for second variable.
Step 6: Check the proposed ordered pair solution in BOTH original equations.

Example 1: Use elimination method to solve the system of equations

$$
\left\{\begin{array}{l}
2 x+3 y=7 \\
x+3 y=8
\end{array}\right.
$$

$$
2 x+3 y=7
$$

(-) $x+3 y=8$
$x+0=-1$
$x=-1$
Now substitute in either equation $x=-1$ to find the value of y .
$x+3 y=8$
$\Rightarrow-1+3 y=8$
$\Rightarrow 3 y=9$
$\Rightarrow y=3$
The solution of the system of equations is $(-1,3)$
Check:
$\begin{array}{lr}2 x+3 y=7 \quad \text { substitute }(-1,3) & \\ 2 x+3 y=2(-1)+3(3)=-2+9=7 & \text { True } \\ x+3 y=8 \quad \text { substitute }(-1,3) \\ x+3 y=(-1)+3(3)=-1+9=8 & \text { True }\end{array}$

