Solving Exponential & Logarithmic Functions

There are two methods for solving exponential and logarithmic equations. One method is fairly simple, but requires a very special form of the exponential and logarithmic equation. The other will work on more complicated exponential equations, but can be a little messy at times. Let's start off by looking at the simpler method.

 $b^x = b^y \Leftrightarrow x = y$ The bases must be the same. If it isn't then this fact will not help.

 $\log_a x = \log_a y \Leftrightarrow x = y$ The bases must be the same and the coefficients must be 1.

Example 1: Solve: $5^{3x} = 5^{7x-2}$ The two bases are the same \Rightarrow the rule $b^x = b^y \Leftrightarrow x = y$ is applicable. $5^{3x} = 5^{7x-2}$ $\Rightarrow 3x = 7x-2$ $\Rightarrow -4x = -2$ $\Rightarrow x = \frac{-2}{-4} = \frac{1}{2}$

Another method depends upon the Inverse Properties that we saw earlier $a^{\log_a x} = a$ and $\log_a a^x = x$

Example 2: Solve:

1) $\ln x - \ln 7 = 0$	2) $\left(\frac{1}{4}\right)^x = 64$
$\ln x - \ln 7 = 0$	(4)
$\Rightarrow \ln x = \ln 7$	$\left(\frac{1}{4}\right) = 64$
$\Rightarrow e^{\ln x} = e^{\ln 7}$	$\Rightarrow 4^{-x} = 4^3$
$\Rightarrow x = 7$	$\Rightarrow -x = 3$
	$\Rightarrow x = -3$
3) $e^x = 3$	4) $\log_2 x = 3$
$e^x = 3$	$\log_2 x = 3$
$\Rightarrow \ln e^x = \ln 3$	$\Rightarrow 2^{\log_2 x} = 2^3$
$\Rightarrow x = \ln 3$	$\Rightarrow x = 8$

Mathelpers

Strategies for solving exponential and logarithmic equations

- 1) Rewrite the original equation in a form that allows the use of the One-to-One properties of exponential or logarithmic functions.
- 2) Rewrite an exponential equation in logarithmic form and apply the Inverse Property of logarithmic functions
- 3) Rewrite an logarithmic equation in exponential form and apply the Inverse Property of exponential functions

Example 3: Solve: $2(3^{2t-4}) - 5 = 13$

 $2(3^{2t-4}) - 5 = 13$ $\Rightarrow 3^{2t-4} = \frac{13+5}{2} = 9$ $\Rightarrow 3^{2t-4} = 9$ $\Rightarrow \log_3 3^{2t-4} = \log_3 9 = \log_3 3^2 = 2$ $\Rightarrow 2t - 4 = 2$ $\Rightarrow 2t = 6$ $\Rightarrow t = 3$

Example 4: Solve $\ln(2x+1) = \ln 3 - \ln x$

Exponentiate both sides, using *e* as the base: $e^{\ln(2x+1)} = e^{\ln 3 - \ln x}$. Since $a^{x-y} = \frac{a^x}{a^y}$, we can write the right hand side as $e^{\ln 3 - \ln x} = \frac{e^{\ln 3}}{e^{\ln x}} = \frac{3}{x}$. Since the left hand side is 2x + 1, we get the equation $2x + 1 = \frac{3}{x}$ or $2x^2 + x = 3$. This is a quadratic equation, so we can set things equal to zero and get:

 $2x^{2} + x - 3 = 0$ (2x + 3)(x - 1) = 0.

The roots are x = 1 and x = -3/2. x = -3/2 doesn't satisfy the original equation, so x = 1 is the only solution.

Example 5: Solve $2^{x+1} = 9^x$.

 $\ln 2^{x+1} = \ln 9^x$. We then use property of logarithms to bring both variables down out of the exponents.

 $\Rightarrow (x+1)\ln 2 = x\ln 9$ $\Rightarrow x\ln 2 + \ln 2 = x\ln 9$ $\Rightarrow \ln 2 = x\ln 9 - x\ln 2 = x(\ln 9 - \ln 2)$

Therefore, $x = \frac{\ln 2}{\ln 9 - \ln 2} \approx 0.4608$.

Mathelpers

Rule 1: Changing Logarithmic Bases: For any logarithmic bases *a* and *b*, and any positive number *m*, $\log_b M = \frac{\log_a M}{\log_a b}$.

Note: In particular
$$\log_b M = \frac{\ln M}{\ln b}$$

Example 6: Solve $\log_2(3x+1) = 2$.

Since the problem uses a log base 2, we will exponentiate both sides, using 2 as the base.

$$2^{\log_2(3x+1)} = 2^2 = 4$$

Using the key fact, we get 3x + 1 = 4, so x = 1.

Example 7: Solve the equation $\log_2 x = \log_2 9$ According to the fourth property $\log_a x = \log_a y \Leftrightarrow x = y$ we conclude that: $\log_2 x = \log_2 9 \Leftrightarrow x = 9$

Example 8: Solve $2\ln(x) = \ln(2+x)$.

The base is *e*. However, when we do exponentiation the left hand side of the equation, we can't use the key fact, since the expression $e^{2\ln(x)}$ does not have "*e*" and "ln" adjacent. However, we can use the property we can write: $2\ln(x) = \ln x^2$.

Now the equation is $\ln(x^2) = \ln(2+x)$. When we do exponentiation both sides, we get

 $x^2 = 2 + x$ $x^2 - x - 2 = 0$

Solving the quadratic we find that x = -1 and x = 2. However, x = -1 is not a solution to the original equation, since the domain of $\ln(x)$ is all strictly positive numbers.

Example 9: Solve $3^{2x+1} - 28 \cdot 3^x + 9 = 0$.

Note that the equation is equivalent to $3 \cdot 3^{2x} - 28 \cdot 3^x + 9 = 0$.

Let $y = 3^x$, then the equation becomes

$$3y^{2} - 28y + 9 = 0$$

(y-9)(3y-1) = 0
y = 9 or $\frac{1}{3}$
 $3^{x} = 9$ or $\frac{1}{3}$
x = 2 or -1

Mathelpers.com