Name: _____

Solving Exponential & Logarithmic Functions

1) Solve the following equations

$$4^x = 16^{2x-2}$$

3)
$$0.1^x = 100$$

$$5) 0.25^x = 16$$

7)
$$0.1^{x+2} = 100^{\frac{1}{3}}$$

9)
$$6 = 2^t$$

11)
$$35 = 4(1.04)^t$$

13)
$$\log_x 4 = \frac{1}{2}$$

15)
$$\log_{16} 8 = x$$

17)
$$\log_3 x = 5$$

19)
$$16^{\log_4 x} = 4$$

21)
$$\ln(x^2 + x - 1) = 0$$

23)
$$\ln(\ln x) = 1$$

2)

Solve the following equations

1)
$$e^{2x} + 3e^x - 4 = 0$$

$$2) \quad \frac{e^x - e^{-x}}{2} = -\frac{3}{4}$$

3)
$$2^{2x+3} + 2^x - 7 = 0$$

4)
$$2^{2x} - 5 \cdot 2^x + 4 = 0$$

$$5) \quad 3^{2x} - 6 \bullet 3^x - 27 = 0$$

6)
$$4^x - 3^{x-0.5} = 3^{x+0.5} - 2^{2x-1}$$

7)
$$2e^{-3x} - 3e^{-x} + e^x = 0$$

8)
$$5e^{4x} - 13e^{2x} - 6 = 0$$

9)
$$e^{2x} + 2e^x - 8 = 0$$

$2) 0.5^{x^2} = 0.125$

4)
$$\left(\frac{1}{4}\right)^{x} = 2$$

6)
$$2^{x^3} = 0.25$$

8)
$$3^x (3^x - 3) = 0$$

10)
$$0.28 = (0.96)^t$$

12)
$$\log_2 x = 7$$

14)
$$\log_x 8 = 3$$

16)
$$\log_2 x^3 = \log_2 (4x)$$

18)
$$\log_2(\log_5 x) = 2$$

20)
$$e^{3x-2}=4$$

22)
$$\ln(4x-3)=7$$

24)
$$\ln x + \ln(x+7) = \ln 4 + \ln 2$$

3) Solve the system of equations

$$\begin{cases} x - y = 5 \\ e^x = \frac{2}{e^y} \end{cases}$$

$$2) \begin{cases} \log x + \log y = 2 \\ x + y = 29 \end{cases}$$

3)
$$\begin{cases} \log x + \log 2y = 1 \\ x^2 + y^2 = 26 \end{cases}$$

4) Solve the following equations

1)
$$Log(x-1)+Log(x+2)=2Log 2$$

2)
$$Log_a(x+5) + Log_a(x+1) - 3Log_a 3 = 0$$

3)
$$Log(x+5) + Log(\frac{-x+7}{4}) - 3Log 2 = 0$$

4)
$$Log_a x + Log_a (x + 1) - 3 = 0$$

- 5) The number of bacteria cells growing exponentially according to the mathematical model $y = y_0 (1.004)'$, where t is measured in hours. If there are 10,000 cells when t=8, how many cells were there when t=0
- 6) The number of compact discs purchased each year is increasing exponentially. The number N, in millions, purchased is given by:

$$N(t) = 7.5(6)^{0.5t}$$

- 1) Where t is time in years and t=0 corresponds to the year 1990
- 2) After what amount of time will 1 billion compact discs be sold in a year?
- 7) It is known that $\frac{1}{4}$ of all aluminum cans distributed will be recycled each year. A beverage company distributed 250, 000 cans. The number still in use after time t, in years is given by the function

$$N(t) = 250000 \left(\frac{1}{4}\right)^t$$

- 1) After how many years will 60,000 cans still be in use?
- 2) After what amount of time will only 10 cans still be in use?