Solving Equations by Factoring

Examine the equation below: $a b=0$
If you let $a=3$, then logically b must equal 0 . Similarly, if you let $b=10$, then a must equal 0 .
Now try letting a be some other non-zero number. You should observe that as long as a does not equal $0, b$ must be equal to zero.

To state the observation more generally, "If $a b=0$, then either $a=0$ or $b=0$." This is an important property of zero which we exploit when solving by factoring.

0 is our magic number because the only way a product can become 0 is if at least one of its factors is 0 .

When the example is factored into $(x-2)(x-3)=0$, this property was applied to determine that either ($x-2$) must equal zero, or $(x-3)$ must equal zero. Therefore, we are able to create two equations and determine two solutions from this observation.

Remark:

You can't guarantee what the factors would have to be if the product was set equal to any other number. For example if $a b=1$, then $a=5$ and $b=1 / 5$ or $a=3$ and $b=1 / 3$, etc. But with the product set equal to 0 , we can guarantee finding the solution by setting each factor equal to 0 .

Example 1: Solve: $4 x(2 x-1)=0$
To solve this equation, find values of x that make the product $4 x(2 x-1)$ equal to 0 . Since the product of 0 and any number is 0 , at least one of the factors in the expression must be zero.
$4 x=0$ or $2 x-1=0$
$x=0$ and $x=\frac{1}{2}$
The solutions of $4 x(2 x-1)=0$ are 0 and $\frac{1}{2}$.
This method of solving equations uses the Zero Product Property.

Rule 1: Zero Product property: For all numbers a and b, if $a b=0$, then $a=0, b=0$ or both a and b equal 0 .

We can use this property to solve any equation that is written in the form $a b=0$.
Rule 1: Solving by Factoring process will require five major steps:
Step1: Move all terms to one side of the equation, usually the left, using addition or subtraction.
Step2: Factor the equation completely.
Step3: Set each factor equal to zero, and solve.
Step4: List each solution from Step 3 as a solution to the original equation.
Step5: Check the solutions in the original equation

