Rolle's Theorem and Mean Value Theorem

Rolle's Theorem:

Consider the graph given below. Note that at the points $x=a$ and $x=b$ we have $f(a)=f(b)$. Thus, the points ($a, f(a)$) and ($b, f(b)$) not only lie on the graph of $y=f(x)$, but they also lie on the same horizontal line. Notice also, that there is a point $x=c$ where the line tangent to the graph is horizontal. That is, $f^{\prime}(c)=0$.

Theorem 1: Rolle's Theorem: Suppose that $y=f(x)$ is continuous at every point of the closed interval $[a, b]$ and differentiable at every point of its interior (a, b). If $f(a)=f(b)$, then there is at least one number c in (a, b) such that $f^{\prime}(c)=0$.

Note 1: We can have more than one point where $f^{\prime}(c)=0$ on the interval $[a, b]$.

Proof: Proof of Rolle's Theorem: Let $f(a)=d=f(b)$.
Case 1: If $f(x)=d \forall x \in[a, b], f$ is a constant on the interval and $f^{\prime}(x)=0 \forall x \in(a, b)$.

Case 2: Suppose $\exists x \in[a, b] \ni f(x)>d$. By the Extreme Value Theorem, you know that f has a maximum at some c in the interval. Since $f(c)>d$, this maximum does not occur at either endpoint. So f has a maximum in the open interval (a, b). This implies that $f(c)$ is a relative maximum and thus a critical number of f. Finally, because f is differentiable at c, you can conclude that $f^{\prime}(c)=0$.

Case 3: Suppose $\exists x \in[a, b] \ni f(x)<d$. By the Extreme Value Theorem, you know that f has a minimum at some c in the interval. Since $f(c)<d$, this minimum does not occur at either endpoint. So f has a minimum in the open interval (a, b). This implies that $f(c)$ is a relative minimum and thus a critical number of f. Finally, because f is differentiable at c, you can conclude that $f^{\prime}(c)=0$.

Remark 1: Remember that $y=f(x)$ must be continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), and that $f(a)=f(b)$ in order to apply Rolle's Theorem. If we fail any of the conditions, we are NOT guaranteed at least one point where $f^{\prime}(c)=0$

Example 1: Find the two x-intercepts of the function $f(x)=-3 x \sqrt{x+1}$ and show that $f^{\prime}(x)=0$ at some point between the two x-intercepts.
$f(x)=-3 x \sqrt{x+1}$ is continuous at every point of the closed interval $[-1,+\infty]$ and differentiable at every point of its interior ($-1,+\infty$)

$$
\begin{aligned}
& f(x)=-3 x \sqrt{x+1} \\
& 0=-3 x \sqrt{x+1} \\
& 0=-3 x \Rightarrow x=0
\end{aligned}
$$

or
$0=\sqrt{x+1} \Rightarrow x=-1$
x-intercepts: $(0,0)$ or $(-1,0)$

$$
\begin{aligned}
f^{\prime}(x) & =-3 x\left[\frac{1}{2}(x+1)^{-1 / 2}\right]+(x+1)^{1 / 2}(-3) \\
& =-3(x+1)^{-1 / 2}\left[\frac{x}{2}+(x+1)\right] \\
& =-3(x+1)^{-1 / 2}\left(\frac{3}{2} x+1\right) \\
0 & =-3(x+1)^{-1 / 2}\left(\frac{3}{2} x+1\right) \\
x & =-1 \text { or } x=-\frac{2}{3}
\end{aligned}
$$

but $x=-1$ is not included on $(-1,0)$, so $x=-\frac{2}{3}$

The Mean Value Theorem

The Mean Value Theorem is a more general case of Rolle's Theorem. We remove the requirement that $f(a)=f(b)$. We still can draw a line through the points $(a, f(a))$ and $(b, f(b))$, but the line is no longer horizontal. But there is a point $x=c$ where the tangent line to $y=f(x)$ at c is parallel to the line through $(a, f(a))$ and $(b, f(b))$.

Theorem 2: The Mean Value Theorem: If f is continuous on a closed interval $[a, b]$ and differentiable on the open interval (a, b), then there exists at least one number c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Another way to write the result of the Mean Value Theorem is: $f(b)-f(a)=f^{\prime}(c)(b-a)$
Note 2: In the Mean Value Theorem, "there is at least one point" means there could be more than one point. For instance, consider the function $y=f(x)$ whose graph is given below.

Notice that on the interval [1, 4] there are two points where $f^{\prime}(c)=\frac{f(4)-f(1)}{4-1}$.
To check if the Mean Value theorem is applicable:

1) Find $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
2) Find the derivative of the function $f^{\prime}(x)$
3) Equate $f^{\prime}(x)$ to $f^{\prime}(c)$
4) Solve for x
