Name:

Rolle's Theorem and Mean Value Theorem

Exercise 1: Use Rolle's theorem to show that the function $f(x)=-x^{3}+2 x+2$ has exactly one zero in the given interval [1,2]

Exercise 2: Find the value(s) of c that satisfy Rolle's Theorem for $f(x)=-x^{2}+6 x-4$ on the interval [1, 5].

Exercise 3: Find the value(s) of c that satisfy the Mean Value Theorem for $f(x)=x^{2}-8 x+15$ on the interval $[4,6]$.

Exercise 4: Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem.

1. $f(x)=x^{2}-4 x+1,[0,4]$
2. $f(x)=x^{3}-3 x^{2}+2 x+5,[0,2]$
3. $f(x)=x \sqrt{x+6}, \quad[-6,0]$

Exercise 5: Let $f(x)=1-x^{2 / 3}$. Show that $f(-1)=f(1)$ but there is no number c in $(-1,1)$ such that $f^{\prime}(c)=0$. Why does this not contradict Rolle's Theorem?

Exercise 6: Verify Rolle's Theorem

1) $f(x)=x^{4}-4 x^{2}$ on $[-2,2]$
2) $f(x)=x^{3}-9 x$ on $[-3,3]$

Exercise 7: Verify the Mean Value Theorem

1) $f(x)=x^{4}$ on $[0,2]$
2) $f(x)=x^{3}-3 x^{2}$ on $[-1,3]$
