Rectangles, Rhombi, and Squares

We studied the properties of parallelograms. Now you will learn the properties of three other special types of parallelograms: rectangles, rhombi, and squares. The diagram shows how these quadrilaterals are related.

Notice how the diagram goes from the most general quadrilateral to the most specific one. Any four-sided figure is a quadrilateral. But a parallelogram is a special quadrilateral whose opposite sides are parallel.

The opposite sides of a square are parallel, so a square is a parallelogram.

In addition, the four angles of a square are right angles, and all four sides are equal. A rectangle is also a parallelogram with four right angles, but its four sides are not equal.

Both squares and rectangles are special types of parallelograms. The best description of a quadrilateral is the one that is the most specific.

Rectangles, rhombi, and squares have all of the properties of parallelograms. In addition, they have their own properties.

Part A: Rectangles

Definition 1: A rectangle is a parallelogram with four right angles.
A rectangle has all of the properties of the parallelogram. In addition to that a rectangle has 4 right angles and congruent diagonals.

Theorem 1: A quadrilateral is a rectangle if and only if it has four right angles

Theorem 2: A parallelogram is a rectangle if and only if its diagonals are congruent.
$A B C D$ is a rectangle

$$
\Leftrightarrow \overline{A C} \cong \overline{B D}
$$

Theorem 3: If a parallelogram has one right angle then it is a rectangle.

Part B: Rhombi

Definition 2: A rhombus is a parallelogram with four congruent sides.
A rhombus has all of the properties of the parallelogram. In addition to that a rhombus has 4 congruent sides; the diagonals bisect the angles and are perpendicular

Theorem 4: A quadrilateral is a rhombus if and only if it has four congruent sides.

Theorem 5: If a parallelogram has two consecutive sides congruent, it is a rhombus.
Theorem 6: A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.

$$
\begin{aligned}
& \mathrm{ABCD} \text { is a rhombus } \\
& \Rightarrow m \angle 1=m \angle 2 \\
& \Rightarrow m \angle 3=m \angle 4 \\
& \Rightarrow m \angle 5=m \angle 6 \\
& \Rightarrow m \angle 7=m \angle 8
\end{aligned}
$$

Theorem 7: A parallelogram is a rhombus if and only if the diagonals are perpendicular.
$A B C D$ is a rhombus

$$
\Leftrightarrow \overline{A C} \perp \overline{B D}
$$

Example 1:

Given: PQRS is a rhombus
Prove: $\overline{P R} \perp \overline{S Q}$

Statements	Reasons
1) $\overline{P Q} \cong \overline{Q R} \cong \overline{R S} \cong \overline{P S}$	1) Def. of a rhombus
2) $\overline{Q S}$ bisects $\overline{P R}$ at T	2) $\overline{Q S}$ and $\overline{P R}$ are diagonals
3) $\overline{P T} \cong \overline{R T}$	3) In a rhombus, diagonals bisect each other
4) $\overline{Q T} \cong \overline{Q T}$	4) Reflexive property
5) $\square P Q T \cong R Q T$	5) SSS Postulate
6) $\angle Q T P \cong \angle Q T R$	6) CPCTC
7) $\angle Q T P$ is a right	7)$2 \cong \angle ' s ~ t h a t ~ f o r m ~ a ~ l i n e a r ~ p a i r ~ a r e ~$ right \angle 's
angle	8) Def. of perpendicular lines

Part C: Squares

Definition 3: A square is a parallelogram with four congruent sides and four right angles.

A square is defined as a parallelogram with four congruent angles and four congruent sides. This means that a square is not only a parallelogram, but also a rectangle and a rhombus.

Therefore, A square has all of the properties of the parallelogram AND the rectangle AND the rhombus.
Theorem 8: A quadrilateral is a square if and only if it is a rhombus and a rectangle at the same time.

Questions you should be able to answer

1) Is every square a rectangle?
2) Is every rectangle a square?
3) Is every rhombus a square?
4) Is every square a rhombus?
5) Is every rectangle a rhombus?
6) Is every rhombus a rectangle?
7) Is every rhombus/square/rectangle a parallelogram?
8) Is every parallelogram a square or rectangle or rhombus?
