Proportions and Similar Triangles

Theorem 1: If a line is parallel to one side of a triangle and intersects the other two sides, then the triangle formed is similar to the original triangle.

If $\overline{B C} \square \overline{D E}$, then $\square A B C \square \square A D E$

Example 1: In the figure, $\overline{A B} \square \overline{P R}$. Find the value of x.

Statements

Reasons

1) $\overline{A B} \square \overline{P R}$	1) Given
2) $\square F J K \square \square F G H$	2) Theorem 1
3) $\frac{A B}{P R}=\frac{Q B}{Q R}$	3)2 's are similar \Rightarrow sides are proportional 4) $(A B)(Q R)=(P R)(Q B)$ $(4)(x)=(4)(5)$ $x=5$

Theorem 2: Triangle Proportionality Theorem:
If a line is parallel to one side of a triangle and intersects the other two sides, then it separates the sides into segments of proportional lengths.

The converse of this theorem is also true.
Theorem 3: Converse of the Triangle Proportionality Theorem:
If a line intersects two sides of a triangle and separates the sides into corresponding segments of proportional lengths, then the line is parallel to the third side.

In particular if $\frac{A B}{B D}=\frac{A C}{C E}=\frac{1}{2}$ the then the points B and C are the midpoints of $\overline{A D}$ and $\overline{A E}$ respectively.
And $\overline{B C}$ is the midsegment of $\square A D E$

Special Segments of Similar Triangles:

Theorem 4: If two triangles are similar, then the measures of the corresponding altitudes are proportional to the measures of the corresponding sides

Theorem 5: If two triangles are similar, then the measures of the corresponding angle bisectors of the triangles are proportional to the measures of the corresponding sides

Theorem 6: If two triangles are similar, then the measures of the corresponding medians are proportional to the measures of the corresponding sides

Theorem 7: Proportional Perimeters Theorem: If two triangles are similar, then the perimeters are proportional to the measures of corresponding sides

Dividing Segments Proportionally

Corollary 1: PROPORTIONAL LENGTHS THEOREM: If three or more parallel lines intersect two transversals, then they cut off the transversals proportionally

$$
\begin{aligned}
& \text { If } \overleftrightarrow{A D} \square \overleftrightarrow{E B} \square \overleftrightarrow{F C} \text {, } \\
& \text { then } \frac{A B}{B C}=\frac{D E}{E F}
\end{aligned}
$$

Corollary 2: If three or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal.

$$
\begin{aligned}
& \text { If } \overleftrightarrow{A D} \square \overleftrightarrow{E B} \square \overleftrightarrow{F C} \text { and } \overline{B C} \cong \overline{A B} \\
& \text { then } \overline{D E} \cong \overline{E F}
\end{aligned}
$$

Theorem 8: THALES' THEOREM (Side Splitting Theorem)
A line parallel to one side of a triangle divides the other two sides proportionally.

Given: $\triangle \mathrm{ABC}$; $\mathrm{DE} / / \mathrm{BC}$
Prove: $\frac{\mathrm{BD}}{\mathrm{AD}}=\frac{\mathrm{CE}}{\mathrm{AE}}$
Proof:

STATEMENTS

1) $\triangle \mathrm{ABC} ; \mathrm{DE} / / \mathrm{BC}$
2) $\angle 1 \cong \angle 2 ; \quad \angle 3 \cong \angle 4$
3) $\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$
4) $\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}$
5) $\mathrm{AB}=\mathrm{AD}+\mathrm{BD} ; \mathrm{AC}=\mathrm{AE}+\mathrm{CE}$
6) $\frac{\mathrm{AD}+\mathrm{BD}}{\mathrm{AD}}=\frac{\mathrm{AE}+\mathrm{CE}}{\mathrm{AE}}$
7) $1+\frac{\mathrm{BD}}{\mathrm{AD}}=1+\frac{\mathrm{CE}}{\mathrm{AE}}$
8) $\frac{\mathrm{BD}}{\mathrm{AD}}=\frac{\mathrm{CE}}{\mathrm{AE}}$

STATEMENTS	REASONS
1) $\triangle \mathrm{ABC} ; \mathrm{DE} / / \mathrm{BC}$	1) Given
2) $\angle 1 \cong \angle 2 ; \angle 3 \cong \angle 4$	2) corresponding $\angle \mathrm{s}$
3) $\triangle \mathrm{ABC} \sim \Delta \mathrm{ADE}$	3) AA similarity theorem
4) $\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}$	4) Def. of $\sim \Delta^{\prime}$ s.
5) $\mathrm{AB}=\mathrm{AD}+\mathrm{BD} ; \mathrm{AC}=\mathrm{AE}+\mathrm{CE}$	5) Segment Addition Postulate
6) $\frac{\mathrm{AD}+\mathrm{BD}}{\mathrm{AD}}=\frac{\mathrm{AE}+\mathrm{CE}}{\mathrm{AE}}$	6) Substitution
7) $1+\frac{\mathrm{BD}}{\mathrm{AD}}=1+\frac{\mathrm{CE}}{\mathrm{AE}}$	7) Division
8) $\frac{\mathrm{BD}}{\mathrm{AD}}=\frac{\mathrm{CE}}{\mathrm{AE}}$	8) Subtraction Property

Theorem 9: THALES' THEOREM AND SIMILAR TRIANGLES:

A straight line drawn parallel to one side of a triangle results in many proportions.

Be careful not to mix these proportions together.

Proportions resulting from similar triangles: $\frac{a}{g}=\frac{c}{h}=\frac{e}{f}$
Proportions resulting from Thales' Theorem: $\frac{a}{b}=\frac{c}{d} ; \frac{b}{g}=\frac{d}{h}$

Theorem 10: CONVERSE OF THALES' THEOREM: If a line divides two sides of a triangle proportionally, it is parallel to the third side.

Given: $\triangle A B C$ with $D E$ so drawn that $\frac{A C}{D C}=\frac{B C}{E C}$
Prove: $D E / / A B$
Proof:

STATEMENTS

Draw DK // AB

1) $\triangle A B C$ with $D E$ so drawn that $\frac{A C}{D C}=\frac{B C}{E C}$
2) $\frac{A C}{D C}=\frac{B C}{K C}$
3) $\therefore E C=K C$
4) $\therefore K$ coincides with E
5) $\therefore D K$ coincides with $D E$
6) $D E / / A B$
7) Given
8) Side Splitting Theorem
9) If three quantities of one proportion are equal respectively to 3 quantities of another, the $4^{\text {th }}$ quantities are equal
10) Both points are equidistant from C on

CB
5) only one line can be drawn through 2 pts.
6) A line assumes all the properties of the line with which it coincides

