Proportions and Similar Triangles

Theorem 1: If a line is parallel to one side of a triangle and intersects the other two sides, then the triangle formed is similar to the original triangle.

If $\overline{BC} \square \overline{DE}$, then $\square ABC \square \square ADE$

Example 1: In the figure, $\overline{AB} \Box \overline{PR}$. Find the value of x.

Statements	Reasons
1) $\overline{AB} \Box \overline{PR}$	1) Given
2) □ <i>FJK</i> □□ <i>FGH</i>	2) Theorem 1
$3) \frac{AB}{PR} = \frac{QB}{QR}$	3) 2 \Box 's are similar \Rightarrow sides are proportional
4) $(AB)(QR) = (PR)(QB)$	
(4)(x) = (4)(5)	
<i>x</i> = 5	

Theorem 2: Triangle Proportionality Theorem:

If a line is parallel to one side of a triangle and intersects the other two sides, then it separates the sides into segments of proportional lengths.

Mathelpers.com

Grade 9

The converse of this theorem is also true.

Theorem 3: Converse of the Triangle Proportionality Theorem:

If a line intersects two sides of a triangle and separates the sides into corresponding segments of proportional lengths, then the line is parallel to the third side.

In particular if $\frac{AB}{BD} = \frac{AC}{CE} = \frac{1}{2}$ the then the points B and C are the midpoints of \overline{AD} and \overline{AE} respectively. And \overline{BC} is the midsegment of $\Box ADE$

Special Segments of Similar Triangles:

Theorem 4: If two triangles are similar, then the measures of the *corresponding* altitudes are proportional to the measures of the corresponding sides

Theorem 5: If two triangles are similar, then the measures of the *corresponding* **angle bisectors** of the triangles are proportional to the measures of the corresponding sides

Theorem 6: If two triangles are similar, then the measures of the *corresponding medians* are proportional to the measures of the corresponding sides

Theorem 7: Proportional Perimeters Theorem: If two triangles are similar, then the perimeters are proportional to the measures of corresponding sides

Dividing Segments Proportionally

Corollary 1: PROPORTIONAL LENGTHS THEOREM: If three or more parallel lines intersect two transversals, then they cut off the transversals proportionally

Grade 9

Corollary 2: If three or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal.

 $then\overline{DE} \cong \overline{EF}$

Theorem 8: THALES' THEOREM (Side Splitting Theorem) A line parallel to one side of a triangle divides the other two sides proportionally.

Given: \triangle ABC; DE // BC

Prove: $\frac{BD}{AD} = \frac{CE}{AE}$

Proof:

STATEMENTS	REASONS
1) △ ABC; DE // BC	1) Given
2) $\angle 1 \cong \angle 2$; $\angle 3 \cong \angle 4$	2) corresponding ∠s
3) \triangle ABC ~ \triangle ADE	3) AA similarity theorem
AB AC	4) Def. of $\sim \Delta$'s.
4) $\frac{A}{AD} = \frac{A}{AE}$	
5) AB = AD + BD; AC = AE + CE	5) Segment Addition Postulate
6) $\frac{AD + BD}{AD} = \frac{AE + CE}{AE}$	6) Substitution
7) $1 + \frac{BD}{AD} = 1 + \frac{CE}{AE}$	7) Division
8) $\frac{BD}{AD} = \frac{CE}{AE}$	8) Subtraction Property

Theorem 9: THALES' THEOREM AND SIMILAR TRIANGLES:

A straight line drawn parallel to one side of a triangle results in many proportions.

Be careful not to mix these proportions together.

Proportions resulting from similar triangles: $\frac{a}{g} = \frac{c}{h} = \frac{e}{f}$

Proportions resulting from Thales' Theorem: $\frac{a}{b} = \frac{c}{d}$; $\frac{b}{g} = \frac{d}{h}$

Theorem 10: CONVERSE OF THALES' THEOREM: If a line divides two sides of a triangle proportionally, it is parallel to the third side.

g

Given: $\triangle ABC$ with DE so drawn that $\frac{AC}{DC} = \frac{BC}{EC}$ Prove: DE //AB

Proof:

С Д______К В

STATEMENTS	REASONS
Draw DK // AB	
1) $\triangle ABC$ with DE so drawn that $\frac{AC}{DC} = \frac{BC}{EC}$	1) Given
2) $\frac{AC}{DC} = \frac{BC}{KC}$	2) Side Splitting Theorem
DC KC	3) If three quantities of one proportion are equal respectively to 3 quantities of
3) $\therefore EC = KC$	another, the 4 th quantities are equal
 4) ∴ K coincides with E 5) ∴ DK coincides with DE 6) DE //AB 	 4) Both points are equidistant from C on CB 5) only one line can be drawn through 2 pts. 6) A line assumes all the properties of the line with which it coincides