Probability using Combination

In some cases, we may need to use more than one combination, permutation or the Fundamental Counting Principle.

A 12 person jury is to be selected from a jury pool consisting of 14 men and 16 women. Suppose the 12 jurors are selected randomly, and let E be the event that the jury chosen has exactly 6 women and 6 men. Then we can calculate $P(E)$ by using our counting techniques.

The total number of possible outcomes when 12 people are drawn from a group of 30 is ${ }_{30} C_{12}=86,493,225$. Choosing a jury of 6 men and 6 women can be thought of as a two step process of choosing 6 men followed by choosing 6 women. The number of ways of choosing the 6 men is ${ }_{14} C_{6}=3003$, and the number of ways of choosing the 6 women is ${ }_{16} C_{6}=8008$. By the Fundamental Counting Principle, the total of number of ways to choose a 6 man and 6 woman jury is: ${ }_{14} C_{6} \times{ }_{16} C_{6}=3003 \times 8008=24,048,024$, and so:
$P(E)=\frac{{ }_{14} C_{6} \times{ }_{16} C_{6}}{{ }_{30} C_{12}}=\frac{24,048,024}{86,493,225} \approx .278$

