Name: \qquad

Polynomials and Synthetic Division

1) Using the remainder theorem, find the remainder of the following divisions and then check your answers by long division.
2) $\left(4 x^{3}-x^{2}+2 x+1\right) \div(x-5)$
3) $\left(3 x^{2}+12 x+1\right) \div(x-1)$
4) Find the quotient and remainder of the following divisions
5) $\left(x^{3}-x^{2}+8 x-5\right) \div\left(x^{2}-7\right)$
6) $\left(x^{3}-5 x^{2}+15\right) \div(x+3)$
7) $\left(2 x^{3}-6 x^{2}-x+6\right) \div(x-6)$
8) $\left(x^{4}+3 x^{3}-x^{2}-2 x-7\right) \div\left(x^{2}+3 x+1\right)$
9) Using long division, find the remainder when $6 x^{3}+5 x^{2}-8 x+1$ is divided by $(2 x-1)$. Check that your answer is correct by using the Remainder Theorem.
10) Verify that the numbers given alongside of the cubic polynomials below are their zeroes.
(1) $2 x^{3}+x^{2}-5 x+2$
$1 / 2,1,-2$
(2) $x^{3}-4 x^{2}+5 x-2$
$2,1,1$
11) On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.
12) Verify that $3,-1,-1 / 3$ are the zeroes of the cubic polynomial $p(x)=3 x^{3}-5 x^{2}-11 x-3$, and then verify the relationship between the zeroes and the coefficients.
13) If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial $x^{2}-2 x+k$, the remainder comes out to be $x+a$, find k and a.
14) Show by using long division that $(3 x-2)$ is a factor of $12 x^{3}+4 x^{2}-17 x+6$. Show also that this is true by using the Factor Theorem.
15) Given that $(x-3)$ is a factor of $f(x)=5 x^{3}+a x^{2}+b x-6$, and that the remainder when $f(x)$ is divided by $(x+2)$ is -40 , find a and b, and the other two factors.
16) Given that $x-2$ is a factor of the polynomial $x^{3}-k x^{2}-24 x+28$, find k and the roots of this polynomial
17) Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$
18) Find all the zeroes of $2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$, if you know that two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.
