Mathelpers

Polynomial Functions of Higher Degrees

If a is a zero of a polynomial and the exponent on the term that produced the root is k then we say that a has multiplicity k.
Zeroes with a multiplicity of 1 are called simple zeroes.
Definition 1: A factor $(x-a)^{k}, k>1$ yields a repeated zero $x=a$ of multiplicity k.

Example 1: The polynomial $h(x)=(x+1)^{3}(x-1)^{2}(x+5)(x-4)$ have four zeroes:

1) $x=-1$ of multiplicity 3
2) $x=1$ of multiplicity 2
3) $x=5$ of multiplicity 1
4) $x=4$ of multiplicity 1

Real Zeros of a Polynomial Functions

If f is a polynomial function and a is a real number, the following statements are equivalent.
$>x=a$ is a zero of the function f.
$>x=a$ is a solution of the polynomial equation $f(x)=0$
$>(x-a)$ is a factor of the polynomial $f(x)$
$>(a, 0)$ is an x -intercept of the graph of f.

To locate the real zeros we use the intermediate value theorem which gives the expected number of zeros in a certain interval. This theorem depends on the signs of $f(a)$ and $f(b)$

Theorem 1: Intermediate Value Theorem: If $f(x)$ is a polynomial with only real coefficients, and if for real numbers a and b, the values $f(a)$ and $f(b)$ are opposite in sign, then there exists at least one real zero between a and b.

Example 2: Does $h(x)=4 x^{3}-x^{2}+x-5$ have any real zeros between 1 and 4?
$h(1)=4(1)^{3}-(1)^{2}+(1)-5=-1$
$h(4)=4(4)^{3}-(4)^{2}+(4)-5=239$
$h(1)=-1<0$ and $h(4)=239>0$, according to the Intermediate Value Theorem there must be a real zero between 1 and 4

Variations in Sign: The number of variations in sign of $f(x)$ is given by the number of "sign flips" as the nonzero coefficients $f(x)$ are read from left to right in the standard form.

Example 3: Find the number of variations in sign in $f(x)=7 x^{6}-2 x^{3}+4 x+5$
Because the leading coefficient is positive, we may want to clearly place $a+$ sign in front of it:

$$
f(x)=+7 x^{6}-2 x^{3}+4 x+5
$$

There are 2 variations in sign. (Don't worry about "missing terms"; they have 0 coefficients.)
Parity: Two integers have the same parity \Leftrightarrow they are both even or both odd.
Descartes' Rule of Signs: Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots .+a_{2} x^{2}+a x+a_{0}$ where the $a^{\prime} s$ are real numbers (called the coefficients of the polynomial) and $a_{n} \neq 0$
Let:
z^{+}is the number of positive real zeros of $f(x)$
z^{-}is the number of negative real zeros of $f(x)$
m is the number of variations in sign in $f(x)$
n is the number of variations in sign in $f(-x)$
Then, $0 \leq z^{+} \leq m$, where z^{+}has the same parity as m
and $0 \leq z^{-} \leq n$, where z^{-}has the same parity as n
Example 4: Based on Descartes' Rule of Signs, give the possible number of positive and negative zeros of $f(x)=2 x^{5}-8 x^{4}+3 x^{3}+19 x-23$

$$
f(x)=2 x^{5}-8 x^{4}+3 x^{3}+19 x-23
$$

\Rightarrow The number of variations in sign in $f(x)$ is 3
\Rightarrow The possible number of positive zeros is 1 or 3 .

$$
\begin{aligned}
& f(-x)=2(-x)^{5}-8(-x)^{4}+3(-x)^{3}+19(-x)-23 \\
& f(-x)=-2 x^{5}-8 x^{4}-3 x^{3}-19 x-23
\end{aligned}
$$

$$
\begin{gathered}
f(-x)=-2 x^{5}-8 x^{4}-3 x^{3}-19 x-23 \\
\uparrow
\end{gathered}
$$

\Rightarrow The number of variations in sign in $f(-x)$ is 0
\Rightarrow The possible number of positive zeros is 0 .

